1
|
Banerjee S, Halder P, Das S, Maiti S, Bhaumik U, Dutta M, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Pentavalent outer membrane vesicles immunized mice sera confers passive protection against five prevalent pathotypes of diarrhoeagenic Escherichia coli in neonatal mice. Immunol Lett 2023; 263:33-45. [PMID: 37734682 DOI: 10.1016/j.imlet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
2
|
Golder T, Mukhopadhyay AK, Koley H, Nandy RK. Nonmetabolizable Arabinose Inhibits Vibrio cholerae Growth in M9 Medium with Gluconate as the Sole Carbon Source. Jpn J Infect Dis 2020; 73:343-348. [PMID: 32350213 DOI: 10.7883/yoken.jjid.2019.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The serogroups O1 and O139 of the marine bacterium Vibrio cholerae are responsible for causing cholera in humans. The pentose sugar arabinose is nonmetabolizable by the pathogen and is present in environmental niches as well as in the human intestine. In this study, arabinose-mediated V. cholerae growth interference was assessed in M9 minimal medium containing gluconate as the sole carbon source in the light of Entner-Doudoroff (ED) pathway, an obligatory metabolic route for gluconate utilization. V. cholerae O1 and O139 strains failed to grow in the presence of ≥ 0.3% arabinose in M9 with 0.2% gluconate, but there was no growth inhibition in the presence of arabinose in M9 with 0.2% glucose. Transcriptional analysis of edd and eda, the genes constituting the ED pathway, showed ~100- and ~17-fold increases, respectively, in M9-gluconate. Minor increases of ~4- and ~2-fold for edd and eda, respectively, were noted in AKI medium supplemented with 0.5% arabinose. The observed arabinose-mediated growth inhibition can contribute toward deepening the understanding of altered phenotypes, if any, via complementation/expression studies in V. cholerae with pBAD vectors and arabinose as an inducer.
Collapse
Affiliation(s)
- Taniya Golder
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), India
| | | | - Hemanta Koley
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), India
| | | |
Collapse
|
3
|
Costa FSL, Bezerra CCR, Neto RM, Morais CLM, Lima KMG. Identification of resistance in Escherichia coli and Klebsiella pneumoniae using excitation-emission matrix fluorescence spectroscopy and multivariate analysis. Sci Rep 2020; 10:12994. [PMID: 32747745 PMCID: PMC7400627 DOI: 10.1038/s41598-020-70033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022] Open
Abstract
Klebsiella pneumoniae and Escherichia coli are part of the Enterobacteriaceae family, being common sources of community and hospital infections and having high antimicrobial resistance. This resistance profile has become the main problem of public health infections. Determining whether a bacterium has resistance is critical to the correct treatment of the patient. Currently the method for determination of bacterial resistance used in laboratory routine is the antibiogram, whose time to obtain the results can vary from 1 to 3 days. An alternative method to perform this determination faster is excitation-emission matrix (EEM) fluorescence spectroscopy combined with multivariate classification methods. In this paper, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machines (SVM), coupled with dimensionality reduction and variable selection algorithms: Principal Component Analysis (PCA), Genetic Algorithm (GA), and the Successive Projections Algorithm (SPA) were used. The most satisfactory models achieved sensitivity and specificity rates of 100% for all classes, both for E. coli and for K. pneumoniae. This finding demonstrates that the proposed methodology has promising potential in routine analyzes, streamlining the results and increasing the chances of treatment efficiency.
Collapse
Affiliation(s)
- Fernanda S L Costa
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Caio C R Bezerra
- Laboratory of Mycobateria, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Renato M Neto
- Laboratory of Mycobateria, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Camilo L M Morais
- Lancashire Teaching Hospitals NHS Trust, Fulwood, Preston, PR2 9HT, UK
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.
| |
Collapse
|