1
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
2
|
Abohashrh M, Ahmad I, Alam MM, Beg MMA, Alshahrani MY, Irfan S, Verma AK, Alshaghdali K, Saeed M. Assessment of IL-12, mRNA expression, vitamin-D level, and their correlation among the Mycobacterium tuberculosis cases. Saudi J Biol Sci 2022; 29:992-997. [PMID: 35197768 PMCID: PMC8847913 DOI: 10.1016/j.sjbs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 10/26/2022] Open
|
3
|
Kalia V, Studzinski GP, Sarkar S. Role of vitamin D in regulating COVID-19 severity-An immunological perspective. J Leukoc Biol 2021; 110:809-819. [PMID: 33464639 PMCID: PMC8014852 DOI: 10.1002/jlb.4covr1020-698r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Vitamin D, a key nutrient/prohormone classically associated with skeletal health, is also an important immunomodulator, with pleotropic effects on innate and adaptive immune cells. Outcomes of several chronic, autoimmune, and infectious diseases are linked to vitamin D. Emergent correlations of vitamin D insufficiency with coronavirus-induced disease 2019 (COVID-19) severity, alongside empirical and clinical evidence of immunoregulation by vitamin D in other pulmonary diseases, have prompted proposals of vitamin D supplementation to curb the COVID-19 public health toll. In this review paper, we engage an immunological lens to discuss potential mechanisms by which vitamin D signals might regulate respiratory disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infections, vis a vis other pulmonary infections. It is proposed that vitamin D signals temper lung inflammatory cascades during SARS-CoV2 infection, and insufficiency of vitamin D causes increased inflammatory cytokine storm, thus leading to exacerbated respiratory disease. Additionally, analogous to studies of reduced cancer incidence, the dosage of vitamin D compounds administered to patients near the upper limit of safety may serve to maximize immune health benefits and mitigate inflammation and disease severity in SARS-CoV2 infections. We further deliberate on the importance of statistically powered clinical correlative and interventional studies, and the need for in-depth basic research into vitamin D-dependent host determinants of respiratory disease severity.
Collapse
Affiliation(s)
- Vandana Kalia
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Surojit Sarkar
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Liu H, Xiong X, Zhu T, Zhu Y, Peng Y, Zhu X, Wang J, Chen H, Chen Y, Guo A. Differential nitric oxide induced by Mycobacterium bovis and BCG leading to dendritic cells apoptosis in a caspase dependent manner. Microb Pathog 2020; 149:104303. [PMID: 32504845 DOI: 10.1016/j.micpath.2020.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are critical for both innate and adaptive immunity. Meanwhile, nitric oxide (NO) is a member of reactive nitrogen species (RNS) generally considered to play a key role in the bactericidal process in innate immunity against Mycobacterium tuberculosis complex infection. The present study therefore investigated the mechanism of NO production in murine DCs induced by Mycobacterium bovis (M.bovis) and its attenuated strain Bacillus Calmette-Guérin (BCG) infection. The expression of genes Slc7A1, Slc7A2, iNOS, and ArgI essential to NO synthesis was up-regulated in M.bovis/BCG infected DCs. IFN-γ addition further increased, while the iNOS inhibitor L-NMMA significantly inhibited their expression. Accordingly, the end products of arginine metabolism, NO and urea, were found to be significantly increased. In addition, BCG induced significantly higher levels of apoptosis in DCs compared to M.bovis shown by higher levels of DNA fragmentation using flow cytometry and release of mitochondrial Cytochrome C, and up-regulation of the genes caspase-3, caspase-8, caspase-9 and dffa critical to apoptosis by qRT-PCR detection and western blot analysis. Furthermore, IFN-γ increased, but L-NMMA decreased apoptosis of M.bovis/BCG infected DCs. In addition, mycobacterial intracellular survival was significantly reduced by IFN-γ treatment in BCG infected DCs, while slightly increased by L-NMMA treatment. Taken altogether, our data show that NO synthesis was differentially increased and associated with apoptosis in M.bovis/BCG infected DCs. These findings may significantly contribute to elucidate the pathogenesis of M.bovis.
Collapse
Affiliation(s)
- Han Liu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xuekai Xiong
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yifan Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiaojie Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Jieru Wang
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Huanchun Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Boylan M, O’Brien MB, Beynon C, Meade KG. 1,25(OH)D vitamin D promotes NOS2 expression in response to bacterial and viral PAMPs in primary bovine salivary gland fibroblasts. Vet Res Commun 2020; 44:83-88. [DOI: 10.1007/s11259-020-09775-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
|
6
|
Elsafi SSMS, Nour BM, Abakar AD, Omer IH, Almugadam BS. Vitamin D level and it is association with the severity of pulmonary tuberculosis in patients attended to Kosti Teaching Hospital, Sudan. AIMS Microbiol 2020; 6:65-74. [PMID: 32226915 PMCID: PMC7099198 DOI: 10.3934/microbiol.2020004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Globally, tuberculosis is one of the major causes of morbidity and mortality in many countries. Previous studies suggest that the incidence and severity of tuberculosis are associated with low levels of vitamin D (Vit D). Therefore, this study aimed to determine the occurrence and associated factors of vitamin D3 deficiency in pulmonary tuberculosis patients at White Nile State, Sudan. 101 individuals of diagnosed pulmonary tuberculosis patients (71 males and 30 females) and 100 non-TB controls (58 males and 42 females) were included in this study. Sputum samples were obtained from TB patients and subjected to examination for acid-fast bacilli (AFB) using Ziehl-Neelsen (ZN) stain and Gene Xpert analysis. Blood samples were collected from both groups and Serum 25(OH)-vitamin D3 was determined by an Enzyme-Linked Immunosorbent Assay. HIV infection in Tuberculosis (TB) group was also investigated using the immunochromatographic test. In our study, the majority of TB patients were suffered from TB relapse (36.6%); non-HIV infected individuals (99.1%) or showed a positive result for AFB (61.4%) in Gene Xpert analysis. Moreover, there is a significant difference in microscopy findings and bacillary levels of AFB, and Rifampicin (RIF) susceptibility pattern of M. tuberculosis strain among sputum samples of TB patients, P-values less 0.0001. Furthermore, we found that TB patients were suffered from vitamin D deficiency. In particular, the mean of vitamin D level was significantly much lower in TB patients (26.7 ± 1.6) compared to non-TB controls (117.3 ± 3.2), P-value equal 0.0001. Likewise, it's much lower in females, individuals of 21-40 years old, and patients with high bacillary levels or those infected by Rifampicin resistance strain. Accordingly, our study was highlighted the TB and Vit D deficiency relationship and showed the need for further studies to a better understanding of the impact of TB on Vit D level and investigate whether vitamin D supplementation can have a role in the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
| | - Bakri Mohammed Nour
- Department of Medical Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Medani, Sudan
| | - Adam Dawoud Abakar
- Department of Medical Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Medani, Sudan.,Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Sudan
| | - Izzedeen Haroun Omer
- Department of Medicine, Faculty of Medicine, University of El Imam El Mahdi, Kosti, Sudan
| | - Babiker Saad Almugadam
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
7
|
Gough ME, Graviss EA, Chen TA, Obasi EM, May EE. Compounding effect of vitamin D 3 diet, supplementation, and alcohol exposure on macrophage response to mycobacterium infection. Tuberculosis (Edinb) 2019; 116S:S42-S58. [PMID: 31126718 DOI: 10.1016/j.tube.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D3 is known to be a key component in the defense against Mycobacterium tuberculosis (Mtb) infection through the regulation of cytokine and effector molecules. Conversely, alcohol exposure has been recognized as an immune dysregulator. Macrophages were extracted from D3 deficient and sufficient diet mice and supplemented with D3 or exposed to ethanol during ex vivo infection using M. bovis BCG, as a surrogate for Mtb. Results of our study indicate that while exogenous supplementation or alcohol exposure did alter immune response, in vivo diet was the greatest determinant of cytokine and effector molecule production. Alcohol exposure was found to profoundly dysregulate primary murine macrophages, with ethanol-exposed cells generally characterized as hyper- or hyporesponsive. Exogenous D3 supplementation had a normative effect for diet deficient host, however supplementation was not sufficient to compensate for the effects of diet deficiency. Vitamin D3 sufficient diet resulted in reduced cell cytotoxicity for the majority of time points. Results provide insight into the ramifications of both the individual and combined health risks of D3 deficiency or alcohol exposure. Given the clinical relevance of D3 deficiency and alcohol use comorbidities, outcomes of this study have implications in therapeutic approaches for the treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Maya E Gough
- Biomedical Engineering Department, University of Houston, USA
| | - Edward A Graviss
- Pathology & Genomic Medicine, Houston Methodist Research Institute, USA
| | - Tzu-An Chen
- HEALTH Research Institute, University of Houston, USA
| | - Ezemenari M Obasi
- HEALTH Research Institute, University of Houston, USA; Psychological, Health, & Learning Sciences Department, University of Houston, USA
| | - Elebeoba E May
- Biomedical Engineering Department, University of Houston, USA; HEALTH Research Institute, University of Houston, USA.
| |
Collapse
|
8
|
Merriman KE, Poindexter MB, Kweh MF, Santos JEP, Nelson CD. Intramammary 1,25-dihydroxyvitamin D 3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J Steroid Biochem Mol Biol 2017; 173:33-41. [PMID: 28229929 DOI: 10.1016/j.jsbmb.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Bacterial infection of the mammary gland activates an intracrine vitamin D pathway in macrophages of dairy cows. The active hormone of the vitamin D pathway, 1,25-dihydroxyvitamin D3 (1,25D), stimulates nitric oxide and β-defensin responses in bovine monocyte cultures, but the effect of 1,25D on innate immune genes in the mammary gland remained unknown. Therefore, the objective of this study was to determine the effects intramammary 1,25D treatment on expression of vitamin D associated host-defenses of the bovine mammary gland. Intramammary treatment of normal, healthy mammary glands of lactating dairy cows (n=14) with 10μg 1,25D increased inducible nitric oxide synthase (iNOS) and β-defensin 7 (DEFB7) gene expression in total milk somatic cells more than two-fold relative to placebo-treated glands within 8h after treatment. The vitamin D 24-hydroxylase gene (CYP24A1) also was increased nearly 100-fold in 1,25D-treated glands within 4h after treatment but was not affected in placebo-treated glands. Both macrophages and neutrophils isolated from milk had increased CYP24A1 expression in response to 1,25D treatment but only macrophages had increased iNOS expression. Repeated intramammary 1,25D treatment, every 12h for 48h, of infected mammary glands of cows diagnosed with subclinical mastitis resulted in increased expression of CYP24A1, DEFB4, DEFB7 and iNOS genes compared to placebo-treated glands. The 1,25D treatment resulted in elevated serum 1,25D concentrations (55 vs 33pg/mL) compared to placebo but it did not change serum calcium concentrations or bacteria counts in milk of infected mammary glands. In conclusion, 1,25D upregulates iNOS and β-defensin genes in vivo in cattle and affirms earlier reports that vitamin D supports innate immune functions of cattle.
Collapse
Affiliation(s)
- Kathryn E Merriman
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Michael B Poindexter
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Mercedes F Kweh
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
9
|
Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun 2017; 85:78-97. [PMID: 28733125 DOI: 10.1016/j.jaut.2017.07.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Vitamin D (VitD) is a prohormone most noted for the regulation of calcium and phosphate levels in circulation, and thus of bone metabolism. Inflammatory and immune cells not only convert inactive VitD metabolites into calcitriol, the active form of VitD, but also express the nuclear receptor of VitD that modulates differentiation, activation and proliferation of these cells. In vitro, calcitriol upregulates different anti-inflammatory pathways and downregulates molecules that activate immune and inflammatory cells. Administration of VitD has beneficial effects in a number of experimental models of autoimmune disease. Epidemiologic studies have indicated that VitD insufficiency is frequently associated with immune disorders and infectious diseases, exacerbated by increasing evidence of suboptimal VitD status in populations worldwide. To date, however, most interventional studies in human inflammatory and immune diseases with VitD supplementation have proven to be inconclusive. One of the reasons could be that the main VitD metabolite measured in these studies was the 25-hydroxyVitD (25OHD) rather than its active form calcitriol. Although our knowledge of calcitriol as modulator of immune and inflammatory reactions has dramatically increased in the past decades, further in vivo and clinical studies are needed to confirm the potential benefits of VitD in the control of immune and inflammatory conditions.
Collapse
|
10
|
Workineh M, Mathewos B, Moges B, Gize A, Getie S, Stendahl O, Schon T, Abate E. Vitamin D deficiency among newly diagnosed tuberculosis patients and their household contacts: a comparative cross-sectional study. ACTA ACUST UNITED AC 2017. [PMID: 28638616 PMCID: PMC5474861 DOI: 10.1186/s13690-017-0195-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Recent studies suggest that the incidence and severity of tuberculosis is associated with low levels of vitamin D. Even though individuals living in Ethiopia have a high exposure to sunlight which is a source of vitamin D, tuberculosis is still one of the major causes of morbidity and mortality in the country. Therefore, this study aimed to determine the prevalence and associated factors of vitamin D deficiency in newly diagnosed tuberculosis patients, household contacts and community controls in Gondar, Ethiopia. Methods A comparative cross-sectional study design was conducted. Blood samples were collected from newly diagnosed smear positive pulmonary TB patients, their household contacts and community controls. Serum 25(OH)-vitamin D3 was determined by an Enzyme Linked Immunosorbent Assay. A serum level of 25(OH)-vitamin D3 below < 50 nmol/L was defined as vitamin D deficiency and <25 nmol/L as severe vitamin D deficiency. Results A total of 126 newly diagnosed smear positive TB patients, 57 house hold contacts and 70 apparently community controls were included in the study. The mean ± SD age (years) of TB patients, house hold contacts and community controls was 29.8 ± 11.9, 24.3 ± 14.7 and 27.3 ± 7.6 respectively. Ninety out of 126 (71.4%) TB patients were underweight with a BMI of < 18.5 kg/m2. The mean 25(OH)-vitamin D3 level of TB patients (30.1 ± 19.3 nmol/L) was significantly lower than community controls (38.5 ± 20.9 nmol/L, P = 0.005 and household contacts (37.7 ± 12.8 nmol/L, P =0.031).). The prevalence of vitamin D deficiency was higher in TB patients (83.3%) than in community controls (67.1%, P = 0.009). The prevalence of vitamin D deficiency was also found higher in household contacts (80.7%). Severe vitamin D deficiency was observed in 53%(67/126), 30% (21/70), 19.3%(11/57) of TB patients, community controls and household contacts respectively. Low BMI (AOR = 2.13; 95%CI: 1.02, 3.28) and being positive for tuberculosis (AOR = 1.93; 95%CI: 1.06, 2.86) were significant predictors of severe vitamin D deficiency. Conclusion High prevalence of vitamin D deficiency was found among newly diagnosed TB patients and in their household contacts. The present study warrants further studies to determine the role of vitamin D supplementation in the prevention and treatment of tuberculosis in Ethiopia.
Collapse
Affiliation(s)
- Meseret Workineh
- Department of Immunology & Molecular Biology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Biniam Mathewos
- Department of Immunology & Molecular Biology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Beyene Moges
- Department of Immunology & Molecular Biology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Adissu Gize
- St. Paul's Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Getie
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Olle Stendahl
- Department of Medical Microbiology, Linkoping University, Linköping, Sweden
| | - Thomas Schon
- Department of Medical Microbiology, Linkoping University, Linköping, Sweden.,Department of Clinical Microbiology and Infectious Diseases, Kalmar county Hospital, Kalmar, Sweden
| | - Ebba Abate
- Department of Immunology & Molecular Biology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Differential Effects of Vitamins A and D on the Transcriptional Landscape of Human Monocytes during Infection. Sci Rep 2017; 7:40599. [PMID: 28094291 PMCID: PMC5240108 DOI: 10.1038/srep40599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022] Open
Abstract
Vitamin A and vitamin D are essential nutrients with a wide range of pleiotropic effects in humans. Beyond their well-documented roles in cellular differentiation, embryogenesis, tissue maintenance and bone/calcium homeostasis, both vitamins have attracted considerable attention due to their association with-immunological traits. Nevertheless, our knowledge of their immunomodulatory potential during infection is restricted to single gene-centric studies, which do not reflect the complexity of immune processes. In the present study, we performed a comprehensive RNA-seq-based approach to define the whole immunomodulatory role of vitamins A and D during infection. Using human monocytes as host cells, we characterized the differential role of both vitamins upon infection with three different pathogens: Aspergillus fumigatus, Candida albicans and Escherichia coli. Both vitamins showed an unexpected ability to counteract the pathogen-induced transcriptional responses. Upon infection, we identified 346 and 176 immune-relevant genes that were regulated by atRA and vitD, respectively. This immunomodulatory activity was dependent on the inflammatory stimulus, allowing us to distinguish regulatory patterns which were specific for each stimulatory setting. Moreover, we explored possible direct and indirect mechanisms of vitamin-mediated regulation of the immune response. Our findings highlight the importance of vitamin-monitoring in critically ill patients. Moreover, our results underpin the potential of atRA and vitD as therapeutic options for anti-inflammatory treatment.
Collapse
|
12
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
13
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci 2015; 53:132-45. [PMID: 26479950 DOI: 10.3109/10408363.2015.1094443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.
Collapse
Affiliation(s)
- Surojit Sarkar
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| | - Martin Hewison
- c Centre for Endocrinology, Diabetes and Metabolism (CEDAM), The University of Birmingham , Birmingham , UK
| | - George P Studzinski
- d Department of Pathology and Laboratory Medicine , Rutgers New Jersey Medical School , Newark , NJ , USA , and
| | - Yan Chun Li
- e Department of Medicine, Division of Biological Sciences , The University of Chicago , Chicago , IL , USA
| | - Vandana Kalia
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| |
Collapse
|
15
|
Elevated 1- α hydroxylase activity in monocytes from patients with active tuberculosis. Clin Dev Immunol 2013; 2013:928138. [PMID: 24371450 PMCID: PMC3859259 DOI: 10.1155/2013/928138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
A uremic patient developed hypercalcemia after tuberculosis infection, and his ionized calcium levels correlated with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) levels. We performed further studies to determine whether monocytes are alternative sites of 1,25(OH)2D3 conversion beyond renal tubular cells. Using an ex vivo bioassay, in this study, we found that 1-α hydroxylase (CYP27B1) activity in monocytes is significantly higher in patients with active tuberculosis (TB) than in those with frequent TB contact. However, when monocytes from patients with active TB were restimulated with antigen derived from Mycobacterium tuberculosis, less 1,25(OH)2D3 was observed. In contrast, the level of 1,25(OH)2D3 was unchanged in those with frequent TB contact. We conclude that monocytes may be an alternative source of 1-α hydroxylase that could convert 25-hydroxyvitamin D3 to the more active 1,25(OH)2D3.
Collapse
|
16
|
Mehta S, Mugusi FM, Bosch RJ, Aboud S, Urassa W, Villamor E, Fawzi WW. Vitamin D status and TB treatment outcomes in adult patients in Tanzania: a cohort study. BMJ Open 2013; 3:e003703. [PMID: 24247327 PMCID: PMC3840339 DOI: 10.1136/bmjopen-2013-003703] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES Vitamin D is an immunomodulator and can alter response to tuberculosis (TB) treatment, though randomised trials have been inconclusive to date. We present one of the first comprehensive analysis of the associations between vitamin D status and TB treatment, T-cell counts and nutritional outcomes by HIV status. DESIGN Cohort study. SETTING Outpatient clinics in Tanzania. PARTICIPANTS 25-hydroxyvitamin D levels were assessed in a cohort of 677 patients with TB (344 HIV infected) initiating anti-TB treatment at enrolment in a multivitamin supplementation (excluding vitamin D) trial (Clinicaltrials.gov identifier: NCT00197704). PRIMARY AND SECONDARY OUTCOME MEASURES Information on treatment outcomes such as failure and relapse, HIV disease progression, T-cell counts and anthropometry was collected routinely, with a median follow-up of 52 and 30 months for HIV-uninfected and HIV-infected patients, respectively. Cox and binomial regression, and generalised estimating equations were used to assess the association of vitamin D status with these outcomes. RESULTS Mean 25-hydroxyvitamin D concentrations at enrolment were 69.8 (±21.5) nmol/L (27.9 (±8.6) ng/mL). Vitamin D insufficiency (<75 nmol/L) was associated with a 66% higher risk of relapse (95% CI 4% to 164%; 133% higher risk in HIV-uninfected patients). Each unit higher 25-hydroxyvitamin D levels at baseline were associated with a decrease of 3 (p=0.004) CD8 and 3 (p=0.01) CD3 T-cells/µL during follow-up in patients with HIV infection. Vitamin D insufficiency was also associated with a greater decrease of body mass index (BMI; -0.21 kg/m(2); 95% CI -0.39 to -0.02), during the first 8 months of follow-up. No association was observed for vitamin D status with mortality or HIV disease progression. CONCLUSIONS Adequate vitamin D status is associated with a lower risk of relapse and with improved nutritional indicators such as BMI in patients with TB, with or without HIV infection. Further research is needed to determine the optimal dose of vitamin D and effectiveness of daily vitamin D supplementation among patients with TB.
Collapse
Affiliation(s)
- Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Ferdinand M Mugusi
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
| | - Ronald J Bosch
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
| | - Willy Urassa
- Diagnostics and Laboratory Technology Team, World Health Organization, Geneva, Switzerland
| | - Eduardo Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Wafaie W Fawzi
- Departments of Global Health and Population, Nutrition, and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Lang PO, Samaras N, Samaras D, Aspinall R. How important is vitamin D in preventing infections? Osteoporos Int 2013; 24:1537-53. [PMID: 23160915 DOI: 10.1007/s00198-012-2204-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022]
Abstract
Interaction with the immune system is one of the most recently established nonclassic effects of vitamin D (VitD). For many years, this was considered to be limited to granulomatous diseases in which synthesis of active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or calcitriol is known to be increased. However, recent reports have supported a role for 1,25(OH)2D3 in promoting normal function of the innate and adaptive immune systems. Crucially, these effects seem to be mediated not only by the endocrine function of circulating calcitriol but also via paracrine (i.e., refers to effects to adjacent or nearby cells) and/or intracrine activity (i.e., refers to a hormone acting inside a cell) of 1,25(OH)2D3 from its precursor 25(OH)D3, the main circulating metabolite of VitD. The ability of this vitamin to influence human immune responsiveness seems to be highly dependent on the 25(OH)D3 status of individuals and may lead to aberrant response to infection or even to autoimmunity in those who are lacking VitD. The potential health significance of this has been underlined by increasing awareness of impaired status in populations across the globe. This review will examine the current understanding of how VitD status may modulate the responsiveness of the human immune system. Furthermore, we discuss how it may play a role in host resistance to common pathogens and how effective is its supplementation for treatment or prevention of infectious diseases in humans.
Collapse
Affiliation(s)
- P O Lang
- Nescens Centre of Preventive Medicine, Clinic of Genolier, Route du Muids, 3, 1272 Genolier, Switzerland.
| | | | | | | |
Collapse
|
18
|
Chun RF, Adams JS, Hewison M. Immunomodulation by vitamin D: implications for TB. Expert Rev Clin Pharmacol 2012; 4:583-91. [PMID: 22046197 DOI: 10.1586/ecp.11.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TB remains a major cause of mortality throughout the world. Low vitamin D status has been linked to increased risk of TB and other immune disorders. These observations suggest a role for vitamin D as a modulator of normal human immune function. This article will detail the cellular and molecular mechanisms by which vitamin D regulates the immune system and how vitamin D insufficiency may lead to immune dysregulation. The importance of vitamin D bioavailability as a mechanism for defining the immunomodulatory actions of vitamin D and its impact on TB will also be discussed. The overall aim will be to provide a fresh perspective on the potential benefits of vitamin D supplementation in the prevention and treatment of TB.
Collapse
Affiliation(s)
- Rene F Chun
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
19
|
Wolden-Kirk H, Gysemans C, Verstuyf A, Mathieu C. Extraskeletal effects of vitamin D. Endocrinol Metab Clin North Am 2012; 41:571-94. [PMID: 22877430 DOI: 10.1016/j.ecl.2012.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of vitamin D receptors in diverse tissues like immune cells, beta-cells in the pancreas, and cardiac myocytes has prompted research to evaluate the impact of vitamin D deficiency on the occurrence of immune diseases, diabetes, and cardiovascular disease (CVD). The expression of receptors not only in normal cells, but also in cancer cells including breast, prostate, and colon cancer cells has moreover opened the path to therapeutic exploitation of vitamin D or its metabolites and hypocalcemic structural analogues as pharmaceutical tools in the fight against chronic non-communicable diseases like diabetes, CVD, and cancer.
Collapse
MESH Headings
- Angiogenesis Inhibitors/metabolism
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Autoimmune Diseases/etiology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/prevention & control
- Calcitriol/metabolism
- Calcitriol/therapeutic use
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/prevention & control
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Dietary Supplements
- Genetic Variation
- Humans
- Immune System/drug effects
- Immune System/metabolism
- Neoplasms/drug therapy
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/prevention & control
- Organ Specificity
- Receptors, Calcitriol/deficiency
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Signal Transduction
- Vitamin D/metabolism
- Vitamin D/therapeutic use
- Vitamin D Deficiency/metabolism
- Vitamin D Deficiency/physiopathology
Collapse
Affiliation(s)
- Heidi Wolden-Kirk
- Laboratory for Clinical and Experimental Endocrinology, Catholic University Leuven (KUL), O&N I Herestraat 49 - bus 902, Leuven 3000, Belgium
| | | | | | | |
Collapse
|
20
|
Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients 2012; 4:181-96. [PMID: 22666545 PMCID: PMC3347026 DOI: 10.3390/nu4030181] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.
Collapse
|
21
|
Sacco RE, Nonnecke BJ, Palmer MV, Waters WR, Lippolis JD, Reinhardt TA. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS One 2012; 7:e33074. [PMID: 22412984 PMCID: PMC3297628 DOI: 10.1371/journal.pone.0033074] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
Deficiency of serum levels of 25-hydroxyvitamin D3 has been related to increased risk of lower respiratory tract infections in children. Respiratory syncytial virus (RSV) is a leading cause of low respiratory tract infections in infants and young children. The neonatal calf model of RSV infection shares many features in common with RSV infection in infants and children. In the present study, we hypothesized that calves with low circulating levels of 25-hydroxyvitamin D3 (25(OH)D3) would be more susceptible to RSV infection than calves with high circulating levels of 25(OH)D3. Calves were fed milk replacer diets with different levels of vitamin D for a 10 wk period to establish two treatment groups, one with high (177 ng/ml) and one with low (32.5 ng/ml) circulating 25(OH)D3. Animals were experimentally infected via aerosol challenge with RSV. Data on circulating 25(OH)D3 levels showed that high and low concentrations of 25(OH)D3 were maintained during infection. At necropsy, lung lesions due to RSV were similar in the two vitamin D treatment groups. We show for the first time that RSV infection activates the vitamin D intracrine pathway in the inflamed lung. Importantly, however, we observed that cytokines frequently inhibited by this pathway in vitro are, in fact, either significantly upregulated (IL-12p40) or unaffected (IFN-γ) in the lungs of RSV-infected calves with high circulating levels of 25(OH)D3. Our data indicate that while vitamin D does have an immunomodulatory role during RSV infection, there was no significant impact on pathogenesis during the early phases of RSV infection. Further examination of the potential effects of vitamin D status on RSV disease resolution will require longer-term studies with immunologically sufficient and deficient vitamin D levels.
Collapse
Affiliation(s)
- Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
22
|
Van Belle TL, Gysemans C, Mathieu C. Vitamin D in autoimmune, infectious and allergic diseases: a vital player? Best Pract Res Clin Endocrinol Metab 2011; 25:617-32. [PMID: 21872803 DOI: 10.1016/j.beem.2011.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin D is a steroid hormone that is acquired via diet or synthesized in the skin upon UV exposure and needs subsequent hydroxylation steps to become activated as 1,25-dihydroxyvitamin D. While widely known for its role in maintaining bone health, vitamin D receptors have also been identified in different immune cell types. Many immune cells can also convert vitamin D into its bioactive form, thus enhancing the locally available concentrations to those required for the immunomodulatory effects of vitamin D. In this review, we summarize the genetic and epidemiologic data potentially linking vitamin D to autoimmune, infectious and allergic diseases. We also discuss how vitamin D influences the immune responses in each of those conditions based on the data generated using patient samples or preclinical models of each of these diseases.
Collapse
Affiliation(s)
- Tom L Van Belle
- Laboratory for Experimental Medicine and Endocrinology, Catholic University Leuven, Herestraat 49, Leuven, Belgium.
| | | | | |
Collapse
|
23
|
|
24
|
|
25
|
Bruce D, Ooi JH, Yu S, Cantorna MT. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp Biol Med (Maywood) 2010; 235:921-7. [PMID: 20660091 DOI: 10.1258/ebm.2010.010061] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vitamin D is being touted as an anti-infective agent and it has even been suggested that vitamin D supplementation could be effective against the H1N1 influenza virus. The claims are largely based on the ability of vitamin D to induce antibacterial peptides and evidence that the immune system produces active vitamin D (1,25(OH)(2)D(3)) in situ. While there are many examples of immune production of 1,25(OH)(2)D(3) in vitro, there is little in vivo evidence. In addition, it is not clear what role immune production of 1,25(OH)(2)D(3) has on the course of disease. Vitamin D and 1,25(OH)(2)D(3) inhibit T helper type 1 (Th1)/Th17-mediated immune responses and autoimmune diseases by acting on the innate and acquired immune system to inhibit the function of Th1 and Th17 cells. Th1 and Th17 cells are important in host resistance to many infections including tuberculosis (TB) caused by Mycobacterium tuberculosis. Paradoxically the innate immune system is induced to produce antibacterial peptides that are effective against TB in vitro. Data from several models of infection have so far not supported a role for vitamin D in affecting the course of disease. There is also very little evidence that vitamin D affects the course of human TB infection. Experiments have not been done in cells, mice or humans to evaluate the effect of vitamin D on influenza virus. At this time it would be premature to claim that vitamin D has an effect on TB, influenza or any other infection.
Collapse
Affiliation(s)
- Danny Bruce
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | |
Collapse
|
26
|
Nelson CD, Reinhardt TA, Thacker TC, Beitz DC, Lippolis JD. Modulation of the bovine innate immune response by production of 1alpha,25-dihydroxyvitamin D(3) in bovine monocytes. J Dairy Sci 2010; 93:1041-9. [PMID: 20172224 DOI: 10.3168/jds.2009-2663] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/30/2009] [Indexed: 01/18/2023]
Abstract
In cattle, the kidney has been the only known site for production of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] from 25-hydroxyvitamin D(3) [25(OH)D(3)] by 1alpha-hydroxylase (1alpha-OHase). Based on human studies, it was hypothesized that bovine monocytes could produce 1,25(OH)(2)D(3) upon activation and 1,25(OH)(2)D(3) would regulate expression of vitamin D-responsive genes in monocytes. First, the effects of 1,25(OH)(2)D(3) on bovine monocytes isolated from peripheral blood were tested. Treatment of nonstimulated monocytes with 1,25(OH)(2)D(3) increased expression of the gene for the vitamin D 24-hydroxylase (24-OHase) enzyme by 51+/-13 fold, but 1,25(OH)(2)D(3) induction of 24-OHase expression was blocked by lipopolysaccharide (LPS) stimulation. In addition, 1,25(OH)(2)D(3) increased the gene expression of inducible nitric oxide synthase and the chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) in LPS-stimulated monocytes 69+/-13 and 40+/-12 fold, respectively. Next, the ability of bovine monocytes to express 1alpha-OHase and produce 1,25(OH)(2)D(3) was tested. Activation of monocytes with LPS, tripalmitoylated lipopeptide (Pam3CSK4), or peptidoglycan caused 43+/-9, 17+/-3, and 19+/-3 fold increases in 1alpha-OHase gene expression, respectively. Addition of 25(OH)D(3) to LPS-stimulated monocytes enhanced expression of inducible nitric oxide synthase and RANTES and nitric oxide production in a dose-dependent manner, giving evidence that activated monocytes convert 25(OH)D(3) to 1,25(OH)(2)D(3). In conclusion, bovine monocytes produce 1,25(OH)(2)D(3) in response to toll-like receptor signaling, and 1,25(OH)(2)D(3) production in monocytes increased the expression of genes involved in the innate immune system. Vitamin D status of cattle might be important for optimal innate immune function because 1,25(OH)(2)D(3) production in activated monocytes and subsequent upregulation of inducible nitric oxide synthase and RANTES expression was dependent on 25(OH)D(3) availability.
Collapse
Affiliation(s)
- C D Nelson
- Periparturient Diseases of Cattle Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010, USA
| | | | | | | | | |
Collapse
|
27
|
Baeke F, Etten EV, Gysemans C, Overbergh L, Mathieu C. Vitamin D signaling in immune-mediated disorders: Evolving insights and therapeutic opportunities. Mol Aspects Med 2008; 29:376-87. [DOI: 10.1016/j.mam.2008.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
|
28
|
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29:726-76. [PMID: 18694980 PMCID: PMC2583388 DOI: 10.1210/er.2008-0004] [Citation(s) in RCA: 1145] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/08/2008] [Indexed: 02/06/2023]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1alpha-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)(2)D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1alpha-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.
Collapse
Affiliation(s)
- Roger Bouillon
- Katholieke Universiteit Leuven, Laboratory of Experimental Medicine and Endocrinology, Herestraat 49, O&N 1 bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The paradoxical effects of vitamin D on type 1 mediated immunity. Mol Aspects Med 2008; 29:369-75. [PMID: 18561994 DOI: 10.1016/j.mam.2008.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 12/19/2022]
Abstract
Low vitamin D status is associated with an increased risk of Th1 mediated autoimmune diseases like inflammatory bowel disease. 1,25(OH)(2)D(3) treatments have been shown to suppress Th1 mediated immunity and protect animals from experimental autoimmunity. Th1 mediated immunity is important for clearance of a number of different infectious diseases. For tuberculosis 1,25(OH)(2)D(3) treatment is associated with decreased Th1 mediated immunity but increased bactericidal activity. Systemic candidiasis is unaffected by 1,25(OH)(2)D(3) treatment. The seemingly paradoxical effects of 1,25(OH)(2)D(3) and vitamin D on Th1 mediated autoimmunity versus infectious immunity point to a broad array of vitamin D targets in the immune system. The interplay of these vitamin D targets and their impact on the host-immune response then dictate the outcome.
Collapse
|
30
|
Norval M, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, Lucas RM, Noonan FP, van der Leun JC. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci 2007; 6:232-51. [PMID: 17344960 DOI: 10.1039/b700018a] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ozone depletion leads to an increase in the ultraviolet-B (UV-B) component (280-315 nm) of solar ultraviolet radiation (UVR) reaching the surface of the Earth with important consequences for human health. Solar UVR has many harmful and some beneficial effects on individuals and, in this review, information mainly published since the previous report in 2003 (F. R. de Gruijl, J. Longstreth, M. Norval, A. P. Cullen, H. Slaper, M. L. Kripke, Y. Takizawa and J. C. van der Leun, Photochem. Photobiol. Sci., 2003, 2, pp. 16-28) is discussed. The eye is exposed directly to sunlight and this can result in acute or long-term damage. Studying how UV-B interacts with the surface and internal structures of the eye has led to a further understanding of the location and pathogenesis of a number of ocular diseases, including pterygium and cataract. The skin is also exposed directly to solar UVR, and the development of skin cancer is the main adverse health outcome of excessive UVR exposure. Skin cancer is the most common form of malignancy amongst fair-skinned people, and its incidence has increased markedly in recent decades. Projections consistently indicate a further doubling in the next ten years. It is recognised that genetic factors in addition to those controlling pigment variation can modulate the response of an individual to UVR. Several of the genetic factors affecting susceptibility to the development of squamous cell carcinoma, basal cell carcinoma and melanoma have been identified. Exposure to solar UVR down-regulates immune responses, in the skin and systemically, by a combination of mechanisms including the generation of particularly potent subsets of T regulatory cells. Such immunosuppression is known to be a crucial factor in the generation of skin cancers. Apart from a detrimental effect on infections caused by some members of the herpesvirus and papillomavirus families, the impact of UV-induced immunosuppression on other microbial diseases and vaccination efficacy is not clear. One important beneficial effect of solar UV-B is its contribution to the cutaneous synthesis of vitamin D, recognised to be a crucial hormone for bone health and for other aspects of general health. There is accumulating evidence that UVR exposure, either directly or via stimulation of vitamin D production, has protective effects on the development of some autoimmune diseases, including multiple sclerosis and type 1 diabetes. Adequate vitamin D may also be protective for the development of several internal cancers and infections. Difficulties associated with balancing the positive effects of vitamin D with the negative effects of too much exposure to solar UV-B are considered. Various strategies that can be adopted by the individual to protect against excessive exposure of the eye or the skin to sunlight are suggested. Finally, possible interactions between ozone depletion and climate warming are outlined briefly, as well as how these might influence human behaviour with regard to sun exposure.
Collapse
Affiliation(s)
- M Norval
- Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peyrin-Biroulet L, Vignal C, Dessein R, Simonet M, Desreumaux P, Chamaillard M. NODs in defence: from vulnerable antimicrobial peptides to chronic inflammation. Trends Microbiol 2006; 14:432-8. [PMID: 16942880 DOI: 10.1016/j.tim.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/28/2006] [Accepted: 08/15/2006] [Indexed: 12/24/2022]
Abstract
Defensins and cathelicidins are prevalent and essential gastrointestinal cationic antimicrobial peptides (CAPs). However, these defensive peptides are not infallible because certain enteropathogens can overcome their protective function. Furthermore, impaired defensin synthesis has been linked to the occurrence of Crohn's disease (CD), a chronic inflammatory bowel disease. Recently, defective bacterial sensing through NOD1 and NOD2 has been related to reduced defensin production, CD predisposition and susceptibility to enteric infection. Hence, we propose that microbial sensors at the gut interface monitor the levels of these effector peptides, which might function as "danger" signals to confer tolerance and alert immunocytes. Further work is required to clarify how gastrointestinal CAPs are regulated and to assess their role in maintaining epithelial homeostasis and triggering adaptive immunity.
Collapse
Affiliation(s)
- Laurent Peyrin-Biroulet
- INSERM U795, University of Lille 2, Huriez Hospital, Digestive Tract Diseases and Nutrition Department, F-59037 Lille, France
| | | | | | | | | | | |
Collapse
|
32
|
Ustianowski A, Shaffer R, Collin S, Wilkinson RJ, Davidson RN. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J Infect 2005; 50:432-7. [PMID: 15907552 DOI: 10.1016/j.jinf.2004.07.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The incidence of tuberculosis (TB) is high amongst foreign-born persons resident in developed countries. Vitamin D is important in the host defence against TB in vitro and deficiency may be an acquired risk factor for this disease. We aimed to determine the incidence and associations of vitamin D deficiency in TB patients diagnosed at an infectious diseases unit in London, UK. METHODS Case-note analysis of 210 unselected patients diagnosed with TB who had plasma vitamin D (25(OH)D3) levels routinely measured. Prevalence of 25(OH)D3 deficiency and its relationship to ethnic origin, religion, site of TB, sex, age, duration in the UK, month of 25(OH)D3 estimation and TB diagnosis were determined. RESULTS Of 210 patients 76% were 25(OH)D3 deficient and 56% had undetectable levels. 70/82 Indian, 24/28 East African Asian, 29/34 Somali, 14/19 Pakistani and Afghani, 16/22 Sri Lankan and 2/6 other African patients were deficient (with 58, 17, 23, 9, 6 and 1 having undetectable levels, respectively). Only 0/6 white Europeans and 1/8 Chinese/South East Asians had low plasma 25(OH)D3 levels. Muslims, Hindus and Sikhs all had equivalent rates of deficiency though Hindus were more likely to have undetectable levels (odds ratio 1.87, 95% CI 1.27-2.76). There was no significant association between 25(OH)D3 level and site of TB or duration of residence in the UK. There was no apparent seasonal variation in either TB diagnosis or 25(OH)D3 level. CONCLUSIONS 25(OH)D3 deficiency commonly associates with TB among all ethnic groups apart from white Europeans, and Chinese/South East Asians. Our data support a lack of sunlight exposure and potentially a vegetarian diet as contributors to this deficiency.
Collapse
Affiliation(s)
- A Ustianowski
- Department of Infection and Tropical Medicine, Lister Unit, Northwick Park Hospital, Harrow, Middlesex HA1 3UJ, UK.
| | | | | | | | | |
Collapse
|
33
|
Abstract
There is evidence from both observational studies and clinical trials that calcium malnutrition and hypovitaminosis D are predisposing conditions for various common chronic diseases. In addition to skeletal disorders, calcium and vitamin D deficits increase the risk of malignancies, particularly of colon, breast and prostate gland, of chronic inflammatory and autoimmune diseases (e.g. insulin-dependent diabetes mellitus, inflammatory bowel disease, multiple sclerosis), as well as of metabolic disorders (metabolic syndrome, hypertension). The aim of the present review was to provide improved understanding of the molecular and cellular processes by which deficits in calcium and vitamin D cause specific changes in cell and organ functions and thereby increase the risk for chronic diseases of different aetiology. 1,25-Dihydroxyvitamin D(3) and extracellular Ca(++) are both key regulators of proliferation, differentiation and function at the cellular level. However, the efficiency of vitamin D receptor-mediated intracellular signalling is limited by the negative effects of hypovitaminosis D on extrarenal 25-hydroxyvitamin D-1alpha-hydroxylase activity and thus on the production of 1,25-dihydroxyvitamin D(3). Calcium malnutrition eventually causes a decrease in calcium concentration in extracellular fluid compartments, resulting in organ-specific modulation of calcium-sensing receptor activity. Hence, attenuation of signal transduction from the ligand-activated vitamin D receptor and calcium-sensing receptor seems to be the prime mechanism by which calcium and vitamin D insufficiencies cause perturbation of cellular functions in bone, kidney, intestine, mammary and prostate glands, endocrine pancreas, vascular endothelium, and, importantly, in the immune system. The wide range of diseases associated with deficits in calcium and vitamin D in combination with the high prevalence of these conditions represents a special challenge for preventive medicine.
Collapse
Affiliation(s)
- M Peterlik
- Department of Pathophysiology, Center for Physiology and Pathophysiology, University of Medicine Vienna, Vienna, Austria.
| | | |
Collapse
|