1
|
Liu Q, Shang Y, Shen L, Yu X, Cao Y, Zeng L, Zhang H, Rao Z, Li Y, Tao Z, Liu Z, Huang X. Outer membrane vesicles from genetically engineered Salmonella enterica serovar Typhimurium presenting Helicobacter pylori antigens UreB and CagA induce protection against Helicobacter pylori infection in mice. Virulence 2024; 15:2367783. [PMID: 38937901 PMCID: PMC11216100 DOI: 10.1080/21505594.2024.2367783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Yinpan Shang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Lu Shen
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Xiaomin Yu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Yanli Cao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Lingbing Zeng
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Hanchi Zhang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zirong Rao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Yi Li
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Zhili Liu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| |
Collapse
|
2
|
Siddique A, Wang Z, Zhou H, Huang L, Jia C, Wang B, Ed-Dra A, Teng L, Li Y, Yue M. The Evolution of Vaccines Development across Salmonella Serovars among Animal Hosts: A Systematic Review. Vaccines (Basel) 2024; 12:1067. [PMID: 39340097 PMCID: PMC11435802 DOI: 10.3390/vaccines12091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella is a significant zoonotic foodborne pathogen, and the global spread of multidrug-resistant (MDR) strains poses substantial challenges, necessitating alternatives to antibiotics. Among these alternatives, vaccines protect the community against infectious diseases effectively. This review aims to summarize the efficacy of developed Salmonella vaccines evaluated in various animal hosts and highlight key transitions for future vaccine studies. A total of 3221 studies retrieved from Web of Science, Google Scholar, and PubMed/Medline databases between 1970 and 2023 were evaluated. One hundred twenty-seven qualified studies discussed the vaccine efficacy against typhoidal and nontyphoidal serovars, including live-attenuated vaccines, killed inactivated vaccines, outer membrane vesicles, outer membrane complexes, conjugate vaccines, subunit vaccines, and the reverse vaccinology approach in different animal hosts. The most efficacious vaccine antigen candidate found was recombinant heat shock protein (rHsp60) with an incomplete Freund's adjuvant evaluated in a murine model. Overall, bacterial ghost vaccine candidates demonstrated the highest efficacy at 91.25% (95% CI = 83.69-96.67), followed by the reverse vaccinology approach at 83.46% (95% CI = 68.21-94.1) across animal hosts. More than 70% of vaccine studies showed significant production of immune responses, including humoral and cellular, against Salmonella infection. Collectively, the use of innovative methods rather than traditional approaches for the development of new effective vaccines is crucial and warrants in-depth studies.
Collapse
Affiliation(s)
- Abubakar Siddique
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zining Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baikui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, BP: 591, Beni Mellal 23000, Morocco
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Liu Q, Li B, Lu J, Zhang Y, Shang Y, Li Y, Gong T, Zhang C. Recombinant outer membrane vesicles delivering eukaryotic expression plasmid of cytokines act as enhanced adjuvants against Helicobacter pylori infection in mice. Infect Immun 2023; 91:e0031323. [PMID: 37889003 PMCID: PMC10652931 DOI: 10.1128/iai.00313-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023] Open
Abstract
The widespread prevalence of Helicobacter pylori (H. pylori) infection remains a great challenge to human health. The existing vaccines are not ideal for preventing H. pylori infection; thus, exploring highly effective adjuvants may improve the immunoprotective efficacy of H. pylori vaccines. In a previous study, we found that the outer membrane vesicles (OMVs), a type of nanoscale particle spontaneously produced by Gram-negative bacteria, could act as adjuvants to boost the immune responses to vaccine antigens. In this study, we explored the potential application of OMVs as delivery vectors for adjuvant development. We constructed recombinant OMVs containing eukaryotic expression plasmid of cytokines, including interleukin 17A or interferon-γ, and evaluated their function as adjuvants in combination with inactivated whole-cell vaccine (WCV) or UreB as vaccine antigens. Our results showed that recombinant OMVs as adjuvants could induce stronger humoral and mucosal immune responses in mice than wild-type H. pylori OMVs and the cholera toxin (CT) adjuvant. Additionally, the recombinant OMVs significantly promoted Th1/Th2/Th17-type immune responses. Furthermore, the recombinant OMV adjuvant induced more potent clearance of H. pylori than CT and wild-type OMVs. Our findings suggest that the recombinant OMVs coupled with cytokines may become potent adjuvants for the development of novel and effective vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jiahui Lu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yejia Zhang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yinpan Shang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yi Li
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Yang M, Su Y, Jiang Y, Huang X, Liu Q, Kong Q. Reducing the endotoxic activity or enhancing the vaccine immunogenicity by altering the length of lipid A acyl chain in Salmonella. Int Immunopharmacol 2023; 114:109575. [PMID: 36700768 DOI: 10.1016/j.intimp.2022.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The balance of the attenuation and reactogenicity is an issue in the development of recombinant attenuated Salmonella vaccines (RASV). Some reactogenic strains produced side effects are partially induced by lipid A. As reported, the number of lipid A acyl chains influence the strength and outcome of immune responses. However, there is rarely any study to investigate the modifications of acyl chain length on the effect of the toxicity and immunogenicity in Salmonella. In this study, foreign acyltransferase genes lpxA and lpxD were introduced into S. Typhimurium, which produced the S006 (ΔaraBAD::PlppCtlpxAC10) or S007 (ΔproBA::PlppSslpxDC16) strains with C10 or C16 acyl chains respectively. The results showed that the increased polymyxin B susceptibility, reduced swimming and invasion capabilities were observed in the S006. In addition, it also exhibited a lower endotoxicity and colonization ability compared to the parent strain. The result indicated the introduction of C10 acyl chains could be as a candidate choice for lipid A detoxifying strategy in engineering bacteria. However, the longer acyl chain modification didn't obviously change these abilities. Parallelly, these modifications were introduced into a Salmonella vaccine strain to determine their influences on the immune responses against Pneumonia. After inoculation by the strain V003 (ΔaraBAD ΔproBA::PlppSslpxDC16 χ9241), the mice produced robust levels of anti-PspA IgG, and a balanced Th1/Th2 immunity, which resulted in a significant survival improvement of mice with challenging against Streptococcus pneumonia. Therefore, the combination of lipid A modification with C16 acyl chain may be a better strategy for the development of ideal RASVs.
Collapse
Affiliation(s)
- Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Qing Liu
- College of Animal Science and technology, Southwest University, Chongqing 400715, China.
| | - Qingke Kong
- College of veterinary medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Bian L, Zheng M, Chang T, Zhou J, Zhang C. Degradation of Aflatoxin B1 by recombinant laccase extracellular produced from Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114062. [PMID: 36108433 DOI: 10.1016/j.ecoenv.2022.114062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Bioenzymatic degradation of aflatoxin B1 (AFB1) is a safe, efficient and environmentally friendly detoxification technology. In this work, AFB1 was successfully degraded by recombinant laccase (fmb-rL103) in the absence of a mediator. The laccase gene was cloned from Bacillus vallismortis fmb-103, and was expressed in heterologous host Escherichia coli after codon optimization. The extracellular production of fmb-rL103 could be induced by adding methanol (6 %, v/v), and the maximum yield was 1545.6 U/L. In the 10 L bioreactor, the extracellular yield increased to 50,950.6 U/L after 20 h of induction, accounting for three quarters of the total yield. The mechanism of methanol-induced extracellular secretion was further studied by measuring acetate content, lac103 gene expression and cell membrane permeability. Furthermore, we explored the biochemical properties of fmb-rL103 and its degradation conditions on AFB1. The degradation efficiency increased constantly with increase in incubation pH and temperature, and exceeded 60 % at pH 7.0 and 37 °C. This work provides new insight into developing the large-scale production of laccase and its application to degrade AFB1.
Collapse
Affiliation(s)
- Luyao Bian
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meixia Zheng
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Chang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiayi Zhou
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Zhang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Song Z, Li B, Zhang Y, Li R, Ruan H, Wu J, Liu Q. Outer Membrane Vesicles of Helicobacter pylori 7.13 as Adjuvants Promote Protective Efficacy Against Helicobacter pylori Infection. Front Microbiol 2020; 11:1340. [PMID: 32733396 PMCID: PMC7358646 DOI: 10.3389/fmicb.2020.01340] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori(H. pylori), a gram-negative bacterium in the human stomach with global prevalence, is relevant to chronic gastrointestinal diseases. Due to its increasing drug resistance and the low protective efficacy of some anti-H. pylori vaccines, it is necessary to find a suitable adjuvant to improve antigen efficiency. In our previous study, we determined that outer membrane vesicles (OMVs), a multicomponent secretion generated by gram-negative bacteria, of H. pylori were safe and could induce long-term and robust immune responses against H. pylori in mice. In this study, we employed two common vaccines, outer membrane proteins (OMPs) and whole cell vaccine (WCV) to assess the adjuvanticity of OMVs in mice. A standard adjuvant, cholera toxin (CT), was used as a control. Purified H. pylori OMVs used as adjuvants generated lasting anti-H. pylori resistance for 12 weeks. Additionally, both systematic and gastric mucosal immunity, as well as humoral immunity, of mice immunized with vaccine and OMVs combinations were significantly enhanced. Moreover, OMVs efficiently promoted Th1 immune response, but the response was skewed toward Th2 and Th17 immunity when compared with that induced by the CT adjuvant. Most importantly, OMVs as adjuvants enhanced the eradication of H. pylori. Thus, OMVs have potential applications as adjuvants in the development of a new generation of vaccines to treat H. pylori infection.
Collapse
Affiliation(s)
- Zifan Song
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Liu Q, Li X, Zhang Y, Song Z, Li R, Ruan H, Huang X. Orally-administered outer-membrane vesicles from Helicobacter pylori reduce H. pylori infection via Th2-biased immune responses in mice. Pathog Dis 2020; 77:5567182. [PMID: 31504509 DOI: 10.1093/femspd/ftz050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/07/2019] [Indexed: 01/12/2023] Open
Abstract
As the trend of antibiotic resistance has increased, prevention and treatment of Helicobacter pylori infection have been challenged by the fact that no vaccines preventing H. pylori infection are available. Scientists continue to make sustained efforts to find better vaccine formulations and adjuvants to eradicate this chronic infection. In this study, we systemically analyzed the protein composition and potential vaccine function of outer-membrane vesicles (OMVs) derived from gerbil-adapted H. pylori strain 7.13. In total, we identified 169 proteins in H. pylori OMVs and found that outer-membrane, periplasmic and extracellular proteins (48.9% of the total proteins) were enriched. Furthermore, we evaluated the immune protective response of H. pylori OMVs in a C57BL/6 mouse model, and mice were orally immunized with OMVs or the H. pylori whole cell vaccine (WCV) alone, with or without cholera toxin (CT) as an adjuvant. The data demonstrated that oral immunization with OMVs can elicit a strong humoral and significantly higher mucosal immune response than the group immunized with the WCV plus the CT adjuvant. Moreover, our results also confirmed that OMVs predominantly induced T helper 2 (Th2)-biased immune responses that can significantly reduce bacterial loads after challenging with the H. pylori Sydney Strain 1 (SS1). In summary, OMVs as new antigen candidates in vaccine design would be of great value in controlling H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiuzhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Yingxuan Zhang
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Zifan Song
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Ruizhen Li
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China, 330006
| |
Collapse
|
8
|
Flagellin-deficient outer membrane vesicles as adjuvant induce cross-protection of Salmonella Typhimurium outer membrane proteins against infection by heterologous Salmonella serotypes. Int J Med Microbiol 2018; 308:796-802. [DOI: 10.1016/j.ijmm.2018.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022] Open
|
9
|
Asmar AT, Collet JF. Lpp, the Braun lipoprotein, turns 50—major achievements and remaining issues. FEMS Microbiol Lett 2018; 365:5071948. [DOI: 10.1093/femsle/fny199] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Abir T Asmar
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Jean-François Collet
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
10
|
Erova TE, Kirtley ML, Fitts EC, Ponnusamy D, Baze WB, Andersson JA, Cong Y, Tiner BL, Sha J, Chopra AK. Protective Immunity Elicited by Oral Immunization of Mice with Salmonella enterica Serovar Typhimurium Braun Lipoprotein (Lpp) and Acetyltransferase (MsbB) Mutants. Front Cell Infect Microbiol 2016; 6:148. [PMID: 27891321 PMCID: PMC5103298 DOI: 10.3389/fcimb.2016.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
We evaluated the extent of attenuation and immunogenicity of the ΔlppAB and ΔlppAB ΔmsbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. typhimurium or its aforementioned mutant strains. The ΔlppAB ΔmsbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ΔlppAB ΔmsbB mutant-immunized mice when compared to that of the ΔlppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ΔlppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ΔlppAB and ΔlppAB ΔmsbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, University of Texas M. D. Anderson Cancer Center Bastrop, TX, USA
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
11
|
Lakshmikanth CL, Jacob SP, Kudva AK, Latchoumycandane C, Yashaswini PSM, Sumanth MS, Goncalves-de-Albuquerque CF, Silva AR, Singh SA, Castro-Faria-Neto HC, Prabhu SK, McIntyre TM, Marathe GK. Escherichia coli Braun Lipoprotein (BLP) exhibits endotoxemia - like pathology in Swiss albino mice. Sci Rep 2016; 6:34666. [PMID: 27698491 PMCID: PMC5048175 DOI: 10.1038/srep34666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1β mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2−/− mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | - Avinash Kundadka Kudva
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Calivarathan Latchoumycandane
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | | | - Adriana R Silva
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sridevi Annapurna Singh
- Department of Protein Chemistry &Technology, Central Food Technological Research Institute/CSIR, Mysore - 570 020, Karnataka, India
| | - Hugo C Castro-Faria-Neto
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sandeep Kumble Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| |
Collapse
|
12
|
New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2016; 60:3717-29. [PMID: 27067323 DOI: 10.1128/aac.00326-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.
Collapse
|
13
|
Sharmila S, Christiana I, Kiran P, Reddy MVR, Sankaran K, Kaliraj P. Bacterial lipid modification enhances immunoprophylaxis of filarial abundant larval transcript-2 protein in Mastomys model. Parasite Immunol 2014; 35:201-13. [PMID: 23495791 DOI: 10.1111/pim.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/11/2013] [Indexed: 11/29/2022]
Abstract
As in many other parasitic diseases, efficacious vaccine for lymphatic filariasis has been elusive for want of new approaches leaving billions of people either debilitated or at risk. With multiple B- and T-cell epitopes, the abundant larval transcript-2 (ALT-2) of the filarial worm, Brugia malayi, has been shown to be a promising immunoprophylactic target. To enhance its efficacy, it was lipid modified using our recently developed protein engineering tool, which then offered 30% more immunoprotection (49 vs. 79%) in Mastomys coucha model. Sustained high levels of IFN-γ (about 100 times) and high antibody titres (10-fold) elicited by lipid-modified ALT-2, as compared to the native form, indicated the maintenance of Th1/Th2 balance that is impaired in filariasis. Thus, this study provides the basis for developing efficacious vaccines for filariasis and other parasitic diseases by exploiting bacterial lipid modification.
Collapse
Affiliation(s)
- S Sharmila
- Centre for Biotechnology, Anna University, Chennai, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
14
|
Yu JE, Yoo AY, Choi KH, Cha J, Kwak I, Kang HY. Identification of antigenic Edwardsiella tarda surface proteins and their role in pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2013; 34:673-682. [PMID: 23231854 DOI: 10.1016/j.fsi.2012.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/30/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
Edwardsiella tarda causes an infectious fish disease called edwardsiellosis. Several outer membrane proteins (OMPs) are associated with virulence factors and are attractive as vaccine candidates. In this study, 4 immuno-reactive OMPs of E. tarda were detected using anti-sera from flounder infected with E. tarda. Using matrix-assisted laser desorption/ionization mass spectrometry analyses, 2 of the 4 OMPs were identified as OmpA and murein lipoprotein (Lpp), which are highly conserved surface proteins in gram-negative bacteria. For further characterization of these surface proteins, we generated ompA- and lpp-inactivated mutants by insertion of a kanamycin cassette in the corresponding genes, and named these mutants E. tarda CK99 and CK164, respectively. As expected, immuno-reactive OmpA and Lpp proteins were absent in E. tarda CK99 and CK164, respectively, confirming that OmpA and Lpp are antigenic surface proteins. Interestingly, the LD(50) value of E. tarda CK164 in fish (2.0 × 10(8) colony-forming unit [CFU]/fish) was greater than that of the parental strain (3.0 × 10(7) CFU/fish). The LD(50) of E. tarda CK99 did not differ from that of its parental strain. After administering attenuated E. tarda CK164 to fish, we monitored the E. tarda-specific immune response profile. We observed that the E. tarda-specific serum IgM titer increased in a time-dependent manner, and was much higher than the value observed after the administration of a heat-killed E. tarda control. Moreover, fish vaccinated with E. tarda CK164 were 100% protected when challenged by CK41, a pathogenic strain. Our results suggest that E. tarda CK164 can potentially be used for developing an effective live attenuated vaccine for edwardsiellosis that can be applied in the aquaculture industry.
Collapse
Affiliation(s)
- Jong Earn Yu
- Department of Microbiology, Pusan National University, Busan 609-735, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect Immun 2012; 81:815-28. [PMID: 23275092 DOI: 10.1128/iai.01067-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future.
Collapse
|
16
|
Shippy DC, Fadl AA. Immunological characterization of a gidA mutant strain of Salmonella for potential use in a live-attenuated vaccine. BMC Microbiol 2012. [PMID: 23194372 PMCID: PMC3520829 DOI: 10.1186/1471-2180-12-286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella is often associated with gastrointestinal disease outbreaks in humans throughout the world due to the consumption of contaminated food. Our previous studies have shown that deletion of glucose-inhibited division gene (gidA) significantly attenuated Salmonella enterica serovar Typhimurium (STM) virulence in both in vitro and in vivo models of infection. Most importantly, immunization with the gidA mutant protected mice from a lethal dose challenge of wild-type STM. In this study, we further characterize the gidA mutant STM strain for potential use in a live-attenuated vaccine. Results The protective efficacy of immunization with the gidA mutant was evaluated by challenging immunized mice with a lethal dose of wild-type STM. Sera levels of IgG2a and IgG1, passive transfer of sera and cells, and cytokine profiling were performed to study the induction of humoral and cellular immune responses induced by immunization with the gidA mutant strain. Additionally, a lymphocyte proliferation assay was performed to gauge the splenocyte survival in response to treatment with STM cell lysate. Mice immunized with the gidA mutant strain were fully protected from a lethal dose challenge of wild-type STM. Naïve mice receiving either cells or sera from immunized mice were partially protected from a lethal dose challenge of wild-type STM. The lymphocyte proliferation assay displayed a significant response of splenocytes from immunized mice when compared to splenocytes from non-immunized control mice. Furthermore, the immunized mice displayed significantly higher levels of IgG1 and IgG2a with a marked increase in IgG1. Additionally, immunization with the gidA mutant strain evoked higher levels of IL-2, IFN-γ, and IL-10 cytokines in splenocytes induced with STM cell lysate. Conclusions Together, the results demonstrate that immunization with the gidA mutant strain protects mice by inducing humoral and cellular immune responses with the humoral immune response potentially being the main mechanism of protection.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI 53706, USA
| | | |
Collapse
|
17
|
Lee DH, Kim SH, Kang W, Choi YS, Lee SH, Lee SR, You S, Lee HK, Chang KT, Shin EC. Adjuvant effect of bacterial outer membrane vesicles with penta-acylated lipopolysaccharide on antigen-specific T cell priming. Vaccine 2011; 29:8293-301. [DOI: 10.1016/j.vaccine.2011.08.102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 01/24/2023]
|
18
|
Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect Immun 2011; 79:5027-38. [PMID: 21930761 DOI: 10.1128/iai.05524-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lipopolysaccharide (LPS), composed of lipid A, core, and O-antigen, is a major virulence factor of Salmonella enterica serovar Typhimurium, with lipid A being a major stimulator to induce the proinflammatory response via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. While Salmonella msbB mutants lacking the myristate chain in lipid A were investigated widely as an anticancer vaccine, inclusion of the msbB mutation in a Salmonella vaccine to deliver heterologous antigens has not yet been investigated. We introduced the msbB mutation alone or in combination with mutations in other lipid A acyl chain modification genes encoding PagL, PagP, and LpxR into wild-type S. enterica serovar Typhimurium. The msbB mutation reduced virulence, while the pagL, pagP, and lpxR mutations did not affect virulence in the msbB mutant background when administered orally to BALB/c mice. Also, all mutants exhibited sensitivity to polymyxin B but did not display sensitivity to deoxycholate. LPS derived from msbB mutants induced less inflammatory responses in human Mono Mac 6 and murine macrophage RAW264.7 cells in vitro. However, an msbB mutant did not decrease the induction of inflammatory responses in mice compared to the levels induced by the wild-type strain, whereas an msbB pagP mutant induced less inflammatory responses in vivo. The mutations were moved to an attenuated Salmonella vaccine strain to evaluate their effects on immunogenicity. Lipid A modification caused by the msbB mutation alone and in combination with pagL, pagP, and lpxR mutations led to higher IgA production in the vaginal tract but still retained the same IgG titer level in serum to PspA, a test antigen from Streptococcus pneumoniae, and to outer membrane proteins (OMPs) from Salmonella.
Collapse
|
19
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol 2010; 192:2044-52. [PMID: 20154134 DOI: 10.1128/jb.00023-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial peptides are critical for innate antibacterial defense. Both Gram-negative and Gram-positive microbes have mechanisms to alter their surfaces and resist killing by antimicrobial peptides. In Vibrio cholerae, two natural epidemic biotypes, classical and El Tor, exhibit distinct phenotypes with respect to sensitivity to the peptide antibiotic polymyxin B: classical strains are sensitive and El Tor strains are relatively resistant. We carried out mutant screens of both biotypes, aiming to identify classical V. cholerae mutants resistant to polymyxin B and El Tor V. cholerae mutants sensitive to polymyxin B. Insertions in a gene annotated msbB (encoding a predicted lipid A secondary acyltransferase) answered both screens, implicating its activity in antimicrobial peptide resistance of V. cholerae. Analysis of a defined mutation in the El Tor biotype demonstrated that msbB is required for resistance to all antimicrobial peptides tested. Mutation of msbB in a classical strain resulted in reduced resistance to several antimicrobial peptides but in no significant change in resistance to polymyxin B. msbB mutants of both biotypes showed decreased colonization of infant mice, with a more pronounced defect observed for the El Tor mutant. Mass spectrometry analysis showed that lipid A of the msbB mutant for both biotypes was underacylated compared to lipid A of the wild-type isolates, confirming that MsbB is a functional acyltransferase in V. cholerae.
Collapse
|
21
|
Virulence, inflammatory potential, and adaptive immunity induced by Shigella flexneri msbB mutants. Infect Immun 2009; 78:400-12. [PMID: 19884336 DOI: 10.1128/iai.00533-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of genetically detoxified lipopolysaccharide (LPS) to stimulate adaptive immune responses is an ongoing area of investigation with significant consequences for the development of safe and effective bacterial vaccines and adjuvants. One approach to genetic detoxification is the deletion of genes whose products modify LPS. The msbB1 and msbB2 genes, which encode late acyltransferases, were deleted in the Shigella flexneri 2a human challenge strain 2457T to evaluate the virulence, inflammatory potential, and acquired immunity induced by strains producing underacylated lipid A. Consistent with a reduced endotoxic potential, S. flexneri 2a msbB mutants were attenuated in an acute mouse pulmonary challenge model. Attenuation correlated with decreases in the production of proinflammatory cytokines and in chemokine release without significant changes in lung histopathology. The levels of specific proinflammatory cytokines (interleukin-1beta [IL-1beta], macrophage inflammatory protein 1alpha [MIP-1alpha], and tumor necrosis factor alpha [TNF-alpha]) were also significantly reduced after infection of mouse macrophages with either single or double msbB mutants. Surprisingly, the msbB double mutant displayed defects in the ability to invade, replicate, and spread within epithelial cells. Complementation restored these phenotypes, but the exact nature of the defects was not determined. Acquired immunity and protective efficacy were also assayed in the mouse lung model, using a vaccination-challenge study. Both humoral and cellular responses were generally robust in msbB-immunized mice and afforded significant protection from lethal challenge. These data suggest that the loss of either msbB gene reduces the endotoxicity of Shigella LPS but does not coincide with a reduction in protective immune responses.
Collapse
|
22
|
An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth. Cancer Gene Ther 2009; 17:97-108. [PMID: 19713997 PMCID: PMC2808459 DOI: 10.1038/cgt.2009.58] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.
Collapse
|
23
|
Chopra AK, Peterson JW. Conducting biodefense-related research in a highly regulated academic environment. Drug Dev Res 2009. [DOI: 10.1002/ddr.20301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Six DA, Carty SM, Guan Z, Raetz CRH. Purification and mutagenesis of LpxL, the lauroyltransferase of Escherichia coli lipid A biosynthesis. Biochemistry 2008; 47:8623-37. [PMID: 18656959 DOI: 10.1021/bi800873n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli lipid A is a hexaacylated disaccharide of glucosamine with secondary laurate and myristate chains on the distal unit. Hexaacylated lipid A is a potent agonist of human Toll-like receptor 4, whereas its tetra- and pentaacylated precursors are antagonists. The inner membrane enzyme LpxL transfers laurate from lauroyl-acyl carrier protein to the 2'- R-3-hydroxymyristate moiety of the tetraacylated lipid A precursor Kdo 2-lipid IV A. LpxL has now been overexpressed, solubilized with n-dodecyl beta- d-maltopyranoside (DDM), and purified to homogeneity. LpxL migration on a gel filtration column is consistent with a molecular mass of 80 kDa, suggestive of an LpxL monomer (36 kDa) embedded in a DDM micelle. Mass spectrometry showed that deformylated LpxL was the predominant species, noncovalently bound to as many as 12 DDM molecules. Purified LpxL catalyzed not only the formation in vitro of Kdo 2-(lauroyl)-lipid IV A but also a slow second acylation, generating Kdo 2-(dilauroyl)-lipid IV A. Consistent with the Kdo dependence of crude LpxL in membranes, Kdo 2-lipid IV A is preferred 6000-fold over lipid IV A by the pure enzyme. Sequence comparisons suggest that LpxL shares distant homology with the glycerol-3-phosphate acyltransferase (GPAT) family, including a putative catalytic dyad located in a conserved H(X) 4D/E motif. Mutation of H132 or E137 to alanine reduces specific activity by over 3 orders of magnitude. Like many GPATs, LpxL can also utilize acyl-CoA as an alternative acyl donor, albeit at a slower rate. Our results show that the acyltransferases that generate the secondary acyl chains of lipid A are members of the GPAT family and set the stage for structural studies.
Collapse
Affiliation(s)
- David A Six
- Department of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
25
|
Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Infect Immun 2008; 76:1390-409. [PMID: 18227160 DOI: 10.1128/iai.01529-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis evolved from Y. pseudotuberculosis to become the causative agent of bubonic and pneumonic plague. We identified a homolog of the Salmonella enterica serovar Typhimurium lipoprotein (lpp) gene in Yersinia species and prepared lpp gene deletion mutants of Y. pseudotuberculosis YPIII, Y. pestis KIM/D27 (pigmentation locus minus), and Y. pestis CO92 with reduced virulence. Mice injected via the intraperitoneal route with 5 x 10(7) CFU of the Deltalpp KIM/D27 mutant survived a month, even though this would have constituted a lethal dose for the parental KIM/D27 strain. Subsequently, these Deltalpp KIM/D27-injected mice were solidly protected against an intranasally administered, highly virulent Y. pestis CO92 strain when it was given as five 50% lethal doses (LD(50)). In a parallel study with the pneumonic plague mouse model, after 72 h postinfection, the lungs of animals infected with wild-type (WT) Y. pestis CO92 and given a subinhibitory dose of levofloxacin had acute inflammation, edema, and masses of bacteria, while the lung tissue appeared essentially normal in mice inoculated with the Deltalpp mutant of CO92 and given the same dose of levofloxacin. Importantly, while WT Y. pestis CO92 could be detected in the bloodstreams and spleens of infected mice at 72 h postinfection, the Deltalpp mutant of CO92 could not be detected in those organs. Furthermore, the levels of cytokines/chemokines detected in the sera were significantly lower in animals infected with the Deltalpp mutant than in those infected with WT CO92. Additionally, the Deltalpp mutant was more rapidly killed by macrophages than was the WT CO92 strain. These data provided evidence that the Deltalpp mutants of yersiniae were significantly attenuated and could be useful tools in the development of new vaccines.
Collapse
|