1
|
Mlynek KD, Cline CR, Biryukov SS, Toothman RG, Bachert BA, Klimko CP, Shoe JL, Hunter M, Hedrick ZM, Dankmeyer JL, Mou S, Fetterer DP, Qiu J, Lee ED, Cote CK, Jia Q, Horwitz MA, Bozue JA. The rLVS Δ capB/ iglABC vaccine provides potent protection in Fischer rats against inhalational tularemia caused by various virulent Francisella tularensis strains. Hum Vaccin Immunother 2023; 19:2277083. [PMID: 37975637 PMCID: PMC10760400 DOI: 10.1080/21645515.2023.2277083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Curtis R. Cline
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sergei S. Biryukov
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Beth A. Bachert
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Zander M. Hedrick
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sherry Mou
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - David P. Fetterer
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Eric D. Lee
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joel A. Bozue
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
2
|
Virulence of Francisella tularensis Subspecies holarctica Biovar japonica and Phenotypic Change during Serial Passages on Artificial Media. Microorganisms 2020; 8:microorganisms8121881. [PMID: 33261098 PMCID: PMC7760542 DOI: 10.3390/microorganisms8121881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis (F. tularensis) is the etiological agent of the zoonotic disease tularemia. F. tularensis subspecies holarctica biovar japonica has rarely been isolated in Japan and is considered to have moderate virulence, although the biological properties of fresh isolates have not been analyzed in detail. Here, we analyzed the virulence of two strains of F. tularensis subspecies holarctica biovar japonica (NVF1 and KU-1) and their phenotypic stability during serial passages in Eugon chocolate agar (ECA) and Chamberlain's chemically defined medium (CDM) based agar (CDMA). C57BL/6 mice intradermally inoculated with 101 colony-forming units of NVF1 or KU-1 died within 9 days, with a median time to death of 7.5 and 7 days, respectively. Both NVF1 and KU-1 strains passaged on ECA 10 times had comparable virulence prior to passaging, whereas strains passaged on ECA 20 times and on CDMA 50 times were attenuated. Attenuated strains had decreased viability in 0.01% H2O2 and lower intracellular growth rates, suggesting both properties are important for F. tularensis virulence. Additionally, passage on ECA of the KU-1 strains altered lipopolysaccharide antigenicity and bacterial susceptibility to β-lactam antibiotics. Our data demonstrate F. tularensis strain virulence in Japan and contribute to understanding phenotypic differences between natural and laboratory environments.
Collapse
|
3
|
Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth In Vitro and for Fitness during Competitive Infection of Fischer 344 Rats. J Bacteriol 2019; 201:JB.00630-18. [PMID: 30642993 PMCID: PMC6416918 DOI: 10.1128/jb.00630-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023] Open
Abstract
The highly virulent intracellular pathogen Francisella tularensis is a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis of Francisella virulence in the Fischer 344 rat, we have constructed an F. tularensis Schu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growth in vitro Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. This in vivo selection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-type F. tularensis Schu S4 strain.IMPORTANCE The intracellular bacterial pathogen Francisella tularensis causes a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches. F. tularensis is one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important for F. tularensis under in vitro and in vivo conditions, providing candidates that can be evaluated for vaccine or antibacterial development.
Collapse
|
4
|
An O-Antigen Glycoconjugate Vaccine Produced Using Protein Glycan Coupling Technology Is Protective in an Inhalational Rat Model of Tularemia. J Immunol Res 2018; 2018:8087916. [PMID: 30622981 PMCID: PMC6304830 DOI: 10.1155/2018/8087916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines.
Collapse
|
5
|
Whelan AO, Flick-Smith HC, Homan J, Shen ZT, Carpenter Z, Khoshkenar P, Abraham A, Walker NJ, Levitz SM, Ostroff GR, Oyston PCF. Protection induced by a Francisella tularensis subunit vaccine delivered by glucan particles. PLoS One 2018; 13:e0200213. [PMID: 30296254 PMCID: PMC6175290 DOI: 10.1371/journal.pone.0200213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective. We undertook a preliminary in silico analysis to identify candidate protein antigens. These antigens were then recombinantly expressed and encapsulated into glucan particles (GPs), purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Immunological profiling in the mouse was used to down-selection to seven lead antigens: FTT1043 (Mip), IglC, FTT0814, FTT0438, FTT0071 (GltA), FTT0289, FTT0890 (PilA) prior to transitioning their evaluation to a Fischer 344 rat model for efficacy evaluation. F344 rats were vaccinated with the GP protein antigens co-delivered with GP-loaded with Francisella LPS. Measurement of cell mediated immune responses and computational epitope analysis allowed down-selection to three promising candidates: FTT0438, FTT1043 and FTT0814. Of these, a GP vaccine delivering Francisella LPS and the FTT0814 protein was able to induce protection in rats against an aerosol challenge of F. tularensis SchuS4, and reduced organ colonisation and clinical signs below that which immunisation with a GP-LPS alone vaccine provided. This is the first report of a protein supplementing protection induced by LPS in a Francisella vaccine. This paves the way for developing an effective, safe subunit vaccine for the prevention of inhalational tularemia, and validates the GP platform for vaccine delivery where complex immune responses are required for prevention of infections by intracellular pathogens.
Collapse
Affiliation(s)
- Adam O. Whelan
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | | | - Jane Homan
- ioGenetics LLC, Madison, WI, United States of America
| | - Zu T. Shen
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zoe Carpenter
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | - Payam Khoshkenar
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ambily Abraham
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Stuart M. Levitz
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gary R. Ostroff
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
6
|
Jia Q, Horwitz MA. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis. Front Cell Infect Microbiol 2018; 8:154. [PMID: 29868510 PMCID: PMC5963219 DOI: 10.3389/fcimb.2018.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Bostian PA, Karnes JM, Cui S, Robinson LJ, Daffner SD, Witt MR, Emery SE. Novel rat tail discitis model using bioluminescent Staphylococcus aureus. J Orthop Res 2017; 35:2075-2081. [PMID: 27918144 PMCID: PMC5459675 DOI: 10.1002/jor.23497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Management of spondylodiscitis is a challenging clinical problem requiring medical and surgical treatment strategies. The purpose of this study was to establish a rat model of spondylodiscitis that utilizes bioluminescent Staphylococcus aureus (S. aureus), thus permitting in vivo surveillance of infection intensity. Inocula of the bioluminescent S. aureus strain XEN36 were created in concentrations of 102 CFU/0.1 ml, 104 CFU/0.1 ml, and 106 CFU/0.1 ml. Three groups of rats were injected with the bacteria in the most proximal intervertebral tail segment. The third most proximal tail segment was injected with saline as a control. Bioluminescence was measured at baseline, 3 days, and weekly for a total of 6 weeks. Detected bioluminescence for each group peaked at day 3 and returned to baseline in 21 days. The average intensity was highest for the experimental group injected with the most concentrated bacterial solution (106 CFU/0.1 ml). Radiographic analysis revealed loss of intervertebral disc space and evidence of osseous bridging. Saline-injected spaces exhibited no decrease in intervertebral spacing as compared to distal sites. Histologic analysis revealed neutrophilic infiltrates, destruction of the annulus fibrosus and nucleus pulposus, destruction of vertebral endplates, and osseous bridging. Saline-injected discs exhibited preserved annulus fibrosus and nucleus pulposus on histology. This study demonstrates that injection of bioluminescent S. aureus into the intervertebral disc of a rat tail is a viable animal model for spondylodiscitis research. This model allows for real-time, in vivo quantification of infection intensity, which may decrease the number of animals required for infection studies of the intervertebral disc. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2075-2081, 2017.
Collapse
Affiliation(s)
- Phillip A. Bostian
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Jonathan M. Karnes
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Shari Cui
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Lisa J. Robinson
- Department of Pathology, West Virginia University, Lab Room 2156, HSC North, Morgantown, WV 26506
| | - Scott D. Daffner
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Michelle R. Witt
- Department of Pathology, West Virginia University, Lab Room 2156, HSC North, Morgantown, WV 26506
| | - Sanford E. Emery
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| |
Collapse
|
8
|
Caspar Y, Maurin M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models. Front Cell Infect Microbiol 2017; 7:122. [PMID: 28443249 PMCID: PMC5386985 DOI: 10.3389/fcimb.2017.00122] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus, antibiotic susceptibility testing (AST) of F. tularensis strains remains of primary importance for detection of the emergence of antibiotic resistances to first-line drugs, and to test new therapeutic alternatives. However, the AST methods reported in the literature were poorly standardized between studies and AST data have not been previously evaluated in a comprehensive and comparative way. The aim of the present review was to summarize experimental data on antibiotic susceptibilities of F. tularensis obtained in acellular media, cell models and animal models since the introduction of fluoroquinolones in the treatment of tularaemia in 1989. We compiled MIC data of 33 antibiotics (including aminoglycosides, fluoroquinolones, tetracyclines, macrolides, β-lactams, chloramphenicol, rifampicin, and linezolid) against 900 F. tularensis strains (504 human strains), including 107 subsp. tularensis (type A), 789 subsp. holarctica (type B) and four subsp. mediasiatica strains, using various AST methods. Specific culture media were identified or confirmed as unsuitable for AST of F. tularensis. Overall, MICs were the lowest for ciprofloxacin (≤ 0.002-0.125 mg/L) and levofloxacin, and ranged from ≤ 0.016 to 2 mg/L for gentamicin, and 0.064 to 4 mg/L for doxycycline. No resistant strain to any of these antibiotics was reported. Fluoroquinolones also exhibited a bactericidal activity against intracellular F. tularensis and lower relapse rates in animal models when compared with the bacteriostatic compound doxycycline. As expected, lower MIC values were found for macrolides against type A and biovar I type B strains, compared to biovar II type B strains. The macrolides were more effective against F. tularensis grown in phagocytic cells than in acellular media.
Collapse
Affiliation(s)
- Yvan Caspar
- Laboratoire de Bactériologie-Hygiène Hospitalière, Département des agents infectieux, Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAGGrenoble, France
| | - Max Maurin
- Laboratoire de Bactériologie-Hygiène Hospitalière, Département des agents infectieux, Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAGGrenoble, France
| |
Collapse
|
9
|
Kreizinger Z, Erdélyi K, Felde O, Fabbi M, Sulyok KM, Magyar T, Gyuranecz M. Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00. BMC Vet Res 2017; 13:46. [PMID: 28183313 PMCID: PMC5301346 DOI: 10.1186/s12917-017-0968-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Two main genetic groups (B.12 and B.FTNF002-00) of Francisella tularensis ssp. holarctica are endemic in Europe. The B.FTNF002-00 group proved to be dominant in Western European countries, while strains of the B.12 group were isolated mainly in Northern, Central and Eastern Europe. The clinical course of tularemia in the European brown hare (Lepus europaeus) also shows distinct patterns according to the geographical area. Acute course of the disease is observed in hares in Western European countries, while signs of sub-acute or chronic infection are more frequently detected in the eastern part of the continent. The aim of the present study was to examine whether there is any difference in the virulence of the strains belonging to the B.FTNF002-00 and B.12 genetic clades. Results Experimental infection of Fischer 344 rats was performed by intra-peritoneal injection of three dilutions of a Hungarian (B.12 genotype) and an Italian (B.FTNF002-00 genotype) F. tularensis ssp. holarctica strain. Moderate difference was observed in the virulence of the two genotypes. Significant differences were observed in total weight loss values and scores of clinical signs between the two genotypes with more rats succumbing to tularemia in groups infected with the B.FTNF002-00 genotype. Conclusions Results of the experimental infection are consistent with previous clinical observations and pathological studies suggesting that F. tularensis ssp. holarctica genotype B.FTNF002-00 has higher pathogenic potential than the B.12 genotype. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-0968-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, P.O. Box 21581, Budapest, Hungary
| | - Orsolya Felde
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Massimo Fabbi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, National Reference Laboratory for Tularemia, Pavia, 27100, Italy
| | - Kinga M Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary.
| |
Collapse
|
10
|
Stinson E, Smith LP, Cole KS, Barry EM, Reed DS. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathog Dis 2016; 74:ftw079. [PMID: 27511964 DOI: 10.1093/femspd/ftw079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/19/2023] Open
Abstract
Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge.
Collapse
Affiliation(s)
- Elizabeth Stinson
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Le'Kneitah P Smith
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kelly Stefano Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland, Baltimore, MD 21201, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Williamson D. Approaches to modelling the human immune response in transition of candidates from research to development. J Immunol Res 2014; 2014:395302. [PMID: 24949489 PMCID: PMC4033477 DOI: 10.1155/2014/395302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
This review considers the steps required to evaluate a candidate biodefense vaccine or therapy as it emerges from the research phase, in order to transition it to development. The options for preclinical modelling of efficacy are considered in the context of the FDA's Animal Rule.
Collapse
Affiliation(s)
- Diane Williamson
- Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wilts SP4 0JQ, UK
| |
Collapse
|
12
|
Stundick MV, Albrecht MT, Houchens CR, Smith AP, Dreier TM, Larsen JC. Animal models for Francisella tularensis and Burkholderia species: scientific and regulatory gaps toward approval of antibiotics under the FDA Animal Rule. Vet Pathol 2013; 50:877-92. [PMID: 23628693 DOI: 10.1177/0300985813486812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development and regulatory approval of medical countermeasures (MCMs) for the treatment and prevention of bacterial threat agent infections will require the evaluation of products in animal models. To obtain regulatory approval, these models must accurately recapitulate aspects of human disease, including, but not necessarily limited to, route of exposure, time to disease onset, pathology, immune response, and mortality. This article focuses on the state of animal model development for 3 agents for which models are largely immature: Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. An overview of available models and a description of scientific and regulatory gaps are provided.
Collapse
Affiliation(s)
- M V Stundick
- US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, 375 E. St, SW- 12th Floor, Washington, DC 20024, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Signarovitz AL, Ray HJ, Yu JJ, Guentzel MN, Chambers JP, Klose KE, Arulanandam BP. Mucosal immunization with live attenuated Francisella novicida U112ΔiglB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model. PLoS One 2012; 7:e47639. [PMID: 23118885 PMCID: PMC3484155 DOI: 10.1371/journal.pone.0047639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022] Open
Abstract
The need for an efficacious vaccine against Francisella tularensis is a consequence of its low infectious dose and high mortality rate if left untreated. This study sought to characterize a live attenuated subspecies novicida-based vaccine strain (U112ΔiglB) in an established second rodent model of pulmonary tularemia, namely the Fischer 344 rat using two distinct routes of vaccination (intratracheal [i.t.] and oral). Attenuation was verified by comparing replication of U112ΔiglB with wild type parental strain U112 in F344 primary alveolar macrophages. U112ΔiglB exhibited an LD50>107 CFU compared to the wild type (LD50 = 5×106 CFU i.t.). Immunization with 107 CFU U112ΔiglB by i.t. and oral routes induced antigen-specific IFN-γ and potent humoral responses both systemically (IgG2a>IgG1 in serum) and at the site of mucosal vaccination (respiratory/intestinal compartment). Importantly, vaccination with U112ΔiglB by either i.t. or oral routes provided equivalent levels of protection (50% survival) in F344 rats against a subsequent pulmonary challenge with ∼25 LD50 (1.25×104 CFU) of the highly human virulent strain SCHU S4. Collectively, these results provide further evidence on the utility of a mucosal vaccination platform with a defined subsp. novicida U112ΔiglB vaccine strain in conferring protective immunity against pulmonary tularemia.
Collapse
Affiliation(s)
- Aimee L. Signarovitz
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Heather J. Ray
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Conlan JW. Tularemia vaccines: recent developments and remaining hurdles. Future Microbiol 2011; 6:391-405. [PMID: 21526941 DOI: 10.2217/fmb.11.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a facultative intracellular bacterial pathogen of humans and other mammals. Its inhaled infectious dose is very low and can result in very high mortality. Historically, subsp. tularensis was developed as a biological weapon and there are now concerns about its abuse as such by terrorists. A live attenuated vaccine developed pragmatically more than half a century ago from the less virulent holarctica subsp. is the sole prophylactic available, but it remains unlicensed. In recent years several other potential live, killed and subunit vaccine candidates have been developed and tested in mice for their efficacy against respiratory challenge with subsp. tularensis. This article will review these vaccine candidates and the development hurdles they face.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Reed DS, Smith L, Dunsmore T, Trichel A, Ortiz LA, Cole KS, Barry E. Pneumonic tularemia in rabbits resembles the human disease as illustrated by radiographic and hematological changes after infection. PLoS One 2011; 6:e24654. [PMID: 21931798 PMCID: PMC3172242 DOI: 10.1371/journal.pone.0024654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Pneumonic tularemia is caused by inhalation of the gram negative bacterium, Francisella tularensis. Because of concerns that tularemia could be used as a bioterrorism agent, vaccines and therapeutics are urgently needed. Animal models of pneumonic tularemia with a pathophysiology similar to the human disease are needed to evaluate the efficacy of these potential medical countermeasures. Principal Findings Rabbits exposed to aerosols containing Francisella tularensis strain SCHU S4 developed a rapidly progressive fatal pneumonic disease. Clinical signs became evident on the third day after exposure with development of a fever (>40.5°C) and a sharp decline in both food and water intake. Blood samples collected on day 4 found lymphopenia and a decrease in platelet counts coupled with elevations in erythrocyte sedimentation rate, alanine aminotransferase, cholesterol, granulocytes and monocytes. Radiographs demonstrated the development of pneumonia and abnormalities of intestinal gas consistent with ileus. On average, rabbits were moribund 5.1 days after exposure; no rabbits survived exposure at any dose (190–54,000 cfu). Gross evaluation of tissues taken at necropsy showed evidence of pathology in the lungs, spleen, liver, kidney and intestines. Bacterial counts confirmed bacterial dissemination from the lungs to the liver and spleen. Conclusions/Significance The pathophysiology of pneumonic tularemia in rabbits resembles what has been reported for humans. Rabbits therefore are a relevant model of the human disease caused by type A strains of F. tularensis.
Collapse
Affiliation(s)
- Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
17
|
Kilmury SLN, Twine SM. The francisella tularensis proteome and its recognition by antibodies. Front Microbiol 2011; 1:143. [PMID: 21687770 PMCID: PMC3109489 DOI: 10.3389/fmicb.2010.00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/18/2010] [Indexed: 01/31/2023] Open
Abstract
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
Collapse
Affiliation(s)
- Sara L. N. Kilmury
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| | - Susan M. Twine
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| |
Collapse
|
18
|
Ray HJ, Chu P, Wu TH, Lyons CR, Murthy AK, Guentzel MN, Klose KE, Arulanandam BP. The Fischer 344 rat reflects human susceptibility to francisella pulmonary challenge and provides a new platform for virulence and protection studies. PLoS One 2010; 5:e9952. [PMID: 20376351 PMCID: PMC2848594 DOI: 10.1371/journal.pone.0009952] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/05/2010] [Indexed: 11/21/2022] Open
Abstract
Background The pathogenesis of Francisella tularensis, the causative agent of tularemia, has been primarily characterized in mice. However, the high degree of sensitivity of mice to bacterial challenge, especially with the human virulent strains of F. tularensis, limits this animal model for screening of defined attenuated vaccine candidates for protection studies. Methods and Findings We analyzed the susceptibility of the Fischer 344 rat to pulmonary (intratracheal) challenge with three different subspecies (subsp) of F. tularensis that reflect different levels of virulence in humans, and characterized the bacterial replication profile in rat bone marrow-derived macrophages (BMDM). In contrast to the mouse, Fischer 344 rats exhibit a broader range of sensitivity to pulmonary challenge with the human virulent subsp. tularensis and holarctica. Unlike mice, Fischer rats exhibited a high degree of resistance to pulmonary challenge with LVS (an attenuated derivative of subsp. holarctica) and subsp. novicida. Within BMDM, subsp. tularensis and LVS showed minimal replication, subsp. novicida showed marginal replication, and subsp. holartica replicated robustly. The limited intramacrophage replication of subsp. tularensis and novicida strains was correlated with the induction of nitric oxide production. Importantly, Fischer 344 rats that survived pulmonary infection with subsp. novicida were markedly protected against subsequent pulmonary challenge with subsp. tularensis, suggesting that subsp. novicida may be a useful platform for the development of vaccines against subsp. tularensis. Conclusions The Fischer 344 rat exhibits similar sensitivity to F. tularensis strains as that reported for humans, and thus the Fischer 344 ray may serve as a better animal model for tularemia vaccine development.
Collapse
Affiliation(s)
- Heather J. Ray
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ping Chu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Terry H. Wu
- Center for Infectious Disease and Immunity, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - C. Rick Lyons
- Center for Infectious Disease and Immunity, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To consider the relevance to severe human lung infections of recently discovered virulence mechanisms of Staphylococcus aureus and Francisella tularensis. RECENT FINDINGS S. aureus has long been considered an opportunistic pathogen. However, due to the emergence of community-acquired methicillin-resistant S. aureus (CA-MRSA) strains that can readily infect and kill normal hosts, S. aureus must now be considered a potentially virulent pathogen. The evolution of S. aureus from an organism associated with asymptomatic nasopharyngeal colonization to one associated with community-acquired lethal infections may reflect horizontal acquisition of bacterial genes that enable efficient spread, aggressive host invasion, and effective immune evasion. Alleviating the burden of staphylococcal disease will require better understanding of host susceptibility and of staphylococcal virulence and antibiotic resistance. In contrast to the rapidly evolving staphylococcal virulence strategy, recent genomic analysis of F. tularensis has revealed a small set of bacterial genes associated with the marked virulence of its North American subspecies. This suggests that a relatively stable strategy of immune evasion underlies this pathogen's ability to establish serious life-threatening lung infections from a very small inoculum. SUMMARY Understanding bacterial pathogenesis will require additional research into both host susceptibility factors and bacterial virulence mechanisms, including horizontal gene transfer. Refinements in the molecular detection of bacteria in the clinical setting, as well as whole genome analysis of both pathogens and patients, are expected to aid in the understanding of bacterial-induced lung injury.
Collapse
|
20
|
Oyston PCF. Francisella tularensis vaccines. Vaccine 2009; 27 Suppl 4:D48-51. [PMID: 19837286 DOI: 10.1016/j.vaccine.2009.07.090] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 07/24/2009] [Indexed: 12/12/2022]
Abstract
Francisella tularensis has attracted attention historically as a biological weapon, due to its high infectivity in aerosols, and the severity of disease in humans. There is no licensed vaccine currently available, although an attenuated live vaccine strain (LVS) was identified in the middle of the last century and has been successfully used to protect humans. Efforts are underway to determine the basis of attenuation of LVS, and to understand the immunity required for protection. Alternative approaches to produce subunit vaccines and defined attenuated strains are also in progress. However, the limitations of animal models may make licensing a candidate vaccine challenging.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| |
Collapse
|