1
|
Migliori ML, Goya ME, Lamberti ML, Silva F, Rota R, Bénard C, Golombek DA. Caenorhabditis elegans as a Promising Model Organism in Chronobiology. J Biol Rhythms 2023; 38:131-147. [PMID: 36680418 DOI: 10.1177/07487304221143483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. Drosophila melanogaster has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode Caenorhabditis elegans provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate C. elegans as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the C. elegans' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.
Collapse
Affiliation(s)
- María Laura Migliori
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - María Eugenia Goya
- European Institute for the Biology of Aging, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Francisco Silva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Rosana Rota
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Claire Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Diego Andrés Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Universidad de San Andrés, Victoria, Argentina
| |
Collapse
|
2
|
Qiu JF, Cui WZ, Zhang Q, Dai TM, Liu K, Li JL, Wang YJ, Sima YH, Xu SQ. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. INSECT SCIENCE 2023; 30:31-46. [PMID: 35446483 DOI: 10.1111/1744-7917.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock plays a critical role in the regulation of host immune defense. However, the mechanistic basis for this regulation is largely unknown. Herein, the core clock gene cryptochrome1 (cry1) knockout line in Bombyx mori, an invertebrate animal model, was constructed to obtain the silkworm with dysfunctional molecular clock, and the dynamic regulation of the circadian clock on the immune responsiveness within 24 h of Staphylococcus aureus infection was analyzed. We found that deletion of cry1 decreased viability of silkworms and significantly reduced resistance of larvae to S. aureus. Time series RNA-seq analysis identified thousands of rhythmically expressed genes, including immune response genes, in the larval immune tissue, fat bodies. Uninfected cry1 knockout silkworms exhibited expression patterns of rhythmically expressed genes similar to wild-type (WT) silkworms infected with S. aureus. However, cry1 knockout silkworms exhibited a seriously weakened response to S. aureus infection. The immune response peaked at 6 and 24 h after infection, during which "transcription storms" occurred, and the expression levels of the immune response genes, PGRP and antimicrobial peptides (AMPs), were significantly upregulated in WT. In contrast, cry1 knockout did not effectively activate Toll, Imd, or NF-κB signaling pathways during the immune adjustment period from 12 to 18 h after infection, resulting in failure to initiate the immune responsiveness peak at 24 h after infection. This may be related to inhibited silkworm fat body energy metabolism. These results demonstrated the dynamic regulation of circadian clock on silkworm immune response to bacterial infection and provided important insights into host antimicrobial defense mechanisms.
Collapse
Affiliation(s)
- Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China, Guangxi Province
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| |
Collapse
|
3
|
Vacheron J, Desbrosses G, Renoud S, Padilla R, Walker V, Muller D, Prigent-Combaret C. Differential Contribution of Plant-Beneficial Functions from Pseudomonas kilonensis F113 to Root System Architecture Alterations in Arabidopsis thaliana and Zea mays. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:212-223. [PMID: 28971723 DOI: 10.1094/mpmi-07-17-0185-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent pseudomonads are playing key roles in plant-bacteria symbiotic interactions due to the multiple plant-beneficial functions (PBFs) they are harboring. The relative contributions of PBFs to plant-stimulatory effects of the well-known plant growth-promoting rhizobacteria Pseudomonas kilonensis F113 (formerly P. fluorescens F113) were investigated using a genetic approach. To this end, several deletion mutants were constructed, simple mutants ΔphlD (impaired in the biosynthesis of 2,4-diacetylphloroglucinol [DAPG]), ΔacdS (deficient in 1-aminocyclopropane-1-carboxylate deaminase activity), Δgcd (glucose dehydrogenase deficient, impaired in phosphate solubilization), and ΔnirS (nitrite reductase deficient), and a quadruple mutant (deficient in the four PBFs mentioned above). Every PBF activity was quantified in the wild-type strain and the five deletion mutants. This approach revealed few functional interactions between PBFs in vitro. In particular, biosynthesis of glucose dehydrogenase severely reduced the production of DAPG. Contrariwise, the DAPG production impacted positively, but to a lesser extent, phosphate solubilization. Inoculation of the F113 wild-type strain on Arabidopsis thaliana Col-0 and maize seedlings modified the root architecture of both plants. Mutant strain inoculations revealed that the relative contribution of each PBF differed according to the measured plant traits and that F113 plant-stimulatory effects did not correspond to the sum of each PBF relative contribution. Indeed, two PBF genes (ΔacdS and ΔnirS) had a significant impact on root-system architecture from both model plants, in in vitro and in vivo conditions. The current work underscored that few F113 PBFs seem to interact between each other in the free-living bacterial cells, whereas they control in concert Arabidopsis thaliana and maize growth and development.
Collapse
Affiliation(s)
- Jordan Vacheron
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Guilhem Desbrosses
- 2 CNRS, INRA, UMR5004, Biochimie & Physiologie Moléculaire des Plantes, Montpellier, France
| | - Sébastien Renoud
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Rosa Padilla
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Vincent Walker
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Daniel Muller
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Claire Prigent-Combaret
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| |
Collapse
|
4
|
Sobrero PM, Muzlera A, Frescura J, Jofré E, Valverde C. A matter of hierarchy: activation of orfamide production by the post-transcriptional Gac-Rsm cascade of Pseudomonas protegens CHA0 through expression upregulation of the two dedicated transcriptional regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:599-611. [PMID: 28703431 DOI: 10.1111/1758-2229.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system.
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Andrés Muzlera
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julieta Frescura
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Edgardo Jofré
- CONICET, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departmento de Ciencias Naturales. Ruta Nacional 36 Km 601, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Claudio Valverde
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
5
|
Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 2017; 33:131. [DOI: 10.1007/s11274-017-2303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
|
6
|
Tsoumtsa LL, Torre C, Ghigo E. Circadian Control of Antibacterial Immunity: Findings from Animal Models. Front Cell Infect Microbiol 2016; 6:54. [PMID: 27242972 PMCID: PMC4861709 DOI: 10.3389/fcimb.2016.00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
Most of the biological functions, including the immune system, are linked to circadian rhythms in living organisms. Changes occurring to biological parameters as the result of these circadian rhythms can therefore affect the outcome of a disease. For decades, model organisms have proven to be a great tool to understanding biological mechanisms such as circadian cycle and immunity. In this review, we created an inventory of the use of model organisms in order to decipher the relation between circadian rhythms and antibacterial immunity.
Collapse
Affiliation(s)
- Landry L Tsoumtsa
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université Marseille, France
| | - Cedric Torre
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université Marseille, France
| |
Collapse
|
7
|
Herrero A, Romanowski A, Meelkop E, Caldart CS, Schoofs L, Golombek DA. Pigment-dispersing factor signaling in the circadian system ofCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2015; 14:493-501. [DOI: 10.1111/gbb.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Herrero
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - A. Romanowski
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - E. Meelkop
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - C. S. Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - L. Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - D. A. Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| |
Collapse
|
8
|
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches. PLoS One 2014; 9:e112871. [PMID: 25396739 PMCID: PMC4232591 DOI: 10.1371/journal.pone.0112871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.
Collapse
|
9
|
Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M. Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol Metab 2013; 24:229-37. [PMID: 23299029 PMCID: PMC3624052 DOI: 10.1016/j.tem.2012.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 12/26/2022]
Abstract
The circadian clock machinery orchestrates organism metabolism to ensure that development, survival, and reproduction are attuned to diurnal environmental variations. For unknown reasons, there is a decline in circadian rhythms with age, concomitant with declines in the overall metabolic tissue homeostasis and changes in the feeding behavior of aged organisms. This disruption of the relationship between the clock and the nutrient-sensing networks might underlie age-related diseases; overall, greater knowledge of the molecular mediators of and variations in clock networks during lifespan may shed light on the aging process and how it may be delayed. In this review we address the complex links between the circadian clock, metabolic (dys)functions, and aging in different model organisms.
Collapse
Affiliation(s)
| | - Jadwiga Giebultowicz
- Department of Zoology & Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, 71013, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy
- Institute of Hepatology, Foundation for Liver Research, C1E 6HX, London, United Kingdom
- Corresponding author: Vinciguerra, M. ()
| |
Collapse
|
10
|
Migliori ML, Romanowski A, Simonetta SH, Valdez D, Guido M, Golombek DA. Daily variation in melatonin synthesis and arylalkylamine N-acetyltransferase activity in the nematode Caenorhabditis elegans. J Pineal Res 2012; 53:38-46. [PMID: 21995323 DOI: 10.1111/j.1600-079x.2011.00969.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin influences circadian rhythms and seasonal behavioral changes in vertebrates; it is synthesized from serotonin by N-acetylation by arylalkylamine N-acetyltransferase (AA-NAT) and O-methylation by N-acetylserotonin methyltransferase. However, its physiology and function in invertebrate models are less understood. In this work, we studied daily variations in melatonin synthesis and AA-NAT activity in the nematode Caenorhabditis elegans. Under light-dark conditions (LD), a rhythmic pattern of melatonin levels was observed, with higher levels toward the middle of the night, peaking at zeitgeber time (ZT) 18, and with a minimum value around ZT0-6. AA-NAT activity showed a diurnal and circadian fluctuation with higher levels of activity during the early night, both under LD and constant darkness conditions. A peak was found around ZT12 and circadian time (CT) 12. In addition, we investigated whether this nocturnal AA-NAT activity is inhibited by light. Our results show that both white and blue light pulses significantly inhibited AA-NAT activity at ZT18. This work demonstrates the daily fluctuation of melatonin synthesis and AA-NAT activity in the adult nematode C. elegans. In summary, this study takes additional advantage of an extremely useful invertebrate model system, which has only recently been exploited for circadian studies.
Collapse
Affiliation(s)
- María L Migliori
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, National Research Council (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Bacterial communities are often heavily consumed by microfaunal predators, such as protozoa and nematodes. Predation is an important cause of mortality and determines the structure and activity of microbial communities in both terrestrial and aquatic ecosystems, and bacteria evolved various defence mechanisms helping them to resist predation. In this review, I summarize known antipredator defence strategies and their regulation, and explore their importance for bacterial fitness in various environmental conditions, and their implications for bacterial evolution and diversification under predation pressure. I discuss how defence mechanisms affect competition and cooperation within bacterial communities. Finally I present some implications of bacterial defence mechanisms for ecosystem services provided by microbial communities, such as nutrient cycling, virulence and the biological control of plant diseases.
Collapse
Affiliation(s)
- Alexandre Jousset
- Georg-August University Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Berliner Str. 28, 37073 Göttingen, Germany.
| |
Collapse
|
12
|
Abstract
Hydrogen sulfide (H2S), an endogenously produced small molecule, protects animals from various stresses. Recent studies demonstrate that animals exposed to H2S are long lived, resistant to hypoxia, and resistant to ischemia–reperfusion injury. We performed a forward genetic screen to gain insights into the molecular mechanisms Caenorhabditis elegans uses to appropriately respond to H2S. At least two distinct pathways appear to be important for this response, including the H2S-oxidation pathway and the hydrogen cyanide (HCN)-assimilation pathway. The H2S-oxidation pathway requires two distinct enzymes important for the oxidation of H2S: the sulfide:quinone reductase sqrd-1 and the dioxygenase ethe-1. The HCN-assimilation pathway requires the cysteine synthase homologs cysl-1 and cysl-2. A low dose of either H2S or HCN can activate hypoxia-inducible factor 1 (HIF-1), which is required for C. elegans to respond to either gas. sqrd-1 and cysl-2 represent the entry points in the H2S-oxidation and HCN-assimilation pathways, respectively, and expression of both of these enzymes is highly induced by HIF-1 in response to both H2S and HCN. In addition to their role in appropriately responding to H2S and HCN, we found that cysl-1 and cysl-2 are both essential mediators of innate immunity against fast paralytic killing by Pseudomonas. Furthermore, in agreement with these data, we showed that growing worms in the presence of H2S is sufficient to confer resistance to Pseudomonas fast paralytic killing. Our results suggest the hypoxia-independent hif-1 response in C. elegans evolved to respond to the naturally occurring small molecules H2S and HCN.
Collapse
|