1
|
Singh R, Hussain MA, Kumar J, Kumar M, Kumari U, Mazumder S. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:30-39. [PMID: 28917943 DOI: 10.1016/j.aquatox.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The current study was aimed to understand the effects of chronic fluoride exposure on fish immune system. African sharp tooth catfish (Clarias gariepinus) were exposed to 73.45mg/L of fluoride corresponding to 1/10 96h LC50 for 30 d and the effects on general fish health and several immune parameters were studied. Chronic fluoride exposure led to significant alteration in serum biochemical parameters including alkaline phosphatase, alanine transaminase, aspartate transaminase, triglycerides, cholesterol and blood urea nitrogen levels revealing the detrimental effect of fluoride on general fish health. Upregulation in cytochrome P450 1A expression, both at mRNA and protein level suggested that fluoride activates the detoxification machinery in headkidney (HK) of C. gariepinus. Histopathological analysis of HK from exposed fish further revealed fluoride-induced hypertrophy, increase in melano-macrophage centers (MMCs) and the development of cell-depleted regions. Fluoride reduced headkidney somatic index (HKSI) and the phagocytic potential of headkidney macrophages (HKM). It induced caspase-3-dependent headkidney leukocyte (HKL) apoptosis, elevated superoxide generation and production of pro-inflammatory cytokine TNF-α besides suppressed T-cell proliferation in the exposed fish. We surmise the elevation in superoxide levels coupled with increased TNF-α production to be plausible causes of fluoride-induced HKL apoptosis. It is concluded that chronic fluoride exposure induces structure-function alterations in HK, the primary lymphoid organ in fish leading to impairment in immune responses.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
2
|
Magnolol protects channel catfish from Aeromonas hydrophila infection via inhibiting the expression of aerolysin. Vet Microbiol 2017; 211:119-123. [PMID: 29102106 DOI: 10.1016/j.vetmic.2017.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023]
Abstract
Aeromonas hydrophila is a common zoonotic pathogen which can cause several infections both in human and animals, particular aquatic animals. Antibiotics have been widely used in the treatment of A. hydrophila infections, however, the development of resistance has limited the treatment for these infections. There is an urgent need for novel agents and strategies against these infections. Aerolysin, a pore-forming toxin secreted by most pathogenic A. hydrophila, is known to contribute to the pathogenesis of A. hydrophila infections. Therefore, aerolysin has been identified as a potential target for drug discovery. In this paper, we found that magnolol, a natural compound without anti -A. hydrophila activity, could significantly inhibit the hemolytic activity of A. hydrophila culture supernatants by inhibiting the transcription of the aerolysin encoding gene aerA at low concentrations. Furthermore, the survival assay showed that magnolol could significantly reduce the mortality induced by A. hydrophila infection in channel catfish (Ictalurus punctatus). Taken together, these findings provide a potent agent against A. hydrophila infections.
Collapse
|
3
|
Ray A, Bhaduri A, Srivastava N, Mazumder S. Identification of novel signature genes attesting arsenic-induced immune alterations in adult zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2017; 321:121-131. [PMID: 27614325 DOI: 10.1016/j.jhazmat.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Arsenic poisoning is a serious global issue. Apart from causing developmental and systemic toxicity, arsenic has recently been reported for its ability to hinder immune responses. The present study is designed to identify the global expression profile associated with arsenic-induced immune alterations at the organismic level. Adult zebrafish (Danio rerio) were exposed to 20, 40 and 80ppb of arsenic trioxide for 30days, sacrificed and global gene expression profile studied. Microarray data suggested 65 immune related genes were commonly affected in the three treatment regimens. The expression profile of key immune related genes (tlr1, nitr1f, nitr1c, crfb8, socs7, socs3b, abcb3/1, mch1uja, ifnγ1-2, cxcl12b and crlf1a) was validated by qPCR. Pathway analysis suggested the major involvement of JAK-STAT circuit in the process. The expression of these marker genes was also studied in arsenic exposed and bacteria (Aeromonas hydrophila) challenged zebrafish. Increase in bacterial colony forming units (CFU) coupled with gross histopathology of kidney in arsenic exposed-bacteria challenged fish suggested profound immuno-compromised condition. We propose that chronic arsenic exposure leads to hyperactivation of the immune system as a consequence when exposed to further stress (microbial) it induces immuno-suppression with pathological implications. The study provides a molecular snap shot for predicting arsenic immuno-toxicity.
Collapse
Affiliation(s)
- Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Asani Bhaduri
- Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Singh R, Banerjee C, Ray A, Rajamani P, Mazumder S. Fluoride-induced headkidney macrophage cell apoptosis involves activation of the CaMKII g-ERK 1/2-caspase-8 axis: the role of superoxide in initiating the apoptotic cascade. Toxicol Res (Camb) 2016; 5:1477-1489. [PMID: 30090451 DOI: 10.1039/c6tx00206d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
Fluoride is known to induce apoptosis though the mechanisms remain obscure. The aim of the present study was to understand the underlying molecular mechanisms of fluoride-induced apoptosis using fish headkidney macrophages (HKMs). Exposure to fluoride triggered HKM cell apoptosis as evidenced by Hoechst 333432 and AnnexinV-propidium iodide staining, the presence of an internucleosomal DNA ladder and the comet assay. Our results suggest the influx of extra-cellular Ca2+ to be an initial event in fluoride-induced HKM cell apoptosis. We observed persistently elevated levels of superoxide anions and our inhibitor studies with EGTA suggested the primal role of the Ca2+ flux in triggering superoxide production in fluoride-exposed HKM cells. Fluoride exposure led to elevated levels of Ca2+/CaM dependent protein kinase II gamma (CaMKIIg) and pre-treatment with the inhibitor KN-93 but not its inactive structural analogue KN-92 reduced the number of apoptotic cells establishing the pro-apoptotic role of CaMKIIg in fluoride-induced HKM cell apoptosis. We report that the sustained superoxide generation is primarily responsible for the increased CaMKIIg levels observed in fluoride-exposed HKM cells. Our inhibitor studies further implicated CaMKIIg in the activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) culminating in caspase-8/caspase-3 mediated apoptosis of HKM cells. We conclude that fluoride-induced apoptosis is largely dependent on Ca2+ induced superoxide generation leading to elevation in CaMKIIg which in turn induces the phosphorylation of ERK 1/2 and downstream activation of extrinsic caspase cascade in HKM cells.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Chaitali Banerjee
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Atish Ray
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Paulraj Rajamani
- School of Environmental Sciences , Jawaharlal Nehru University , Delhi , India
| | - Shibnath Mazumder
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| |
Collapse
|
5
|
Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila AL06-06. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00368-15. [PMID: 25908146 PMCID: PMC4408347 DOI: 10.1128/genomea.00368-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. Here, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains that cause bacterial septicemia in channel catfish aquaculture.
Collapse
|
6
|
Effect of temperature and arsenic on Aeromonas hydrophila growth, a modelling approach. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0392-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Role of calmodulin-calmodulin kinase II, cAMP/protein kinase A and ERK 1/2 on Aeromonas hydrophila-induced apoptosis of head kidney macrophages. PLoS Pathog 2014; 10:e1004018. [PMID: 24763432 PMCID: PMC3999153 DOI: 10.1371/journal.ppat.1004018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/05/2014] [Indexed: 01/06/2023] Open
Abstract
The role of calcium (Ca2+) and its dependent protease calpain in Aeromonas hydrophila-induced head kidney macrophage (HKM) apoptosis has been reported. Here, we report the pro-apoptotic involvement of calmodulin (CaM) and calmodulin kinase II gamma (CaMKIIg) in the process. We observed significant increase in CaM levels in A. hydrophila-infected HKM and the inhibitory role of BAPTA/AM, EGTA, nifedipine and verapamil suggested CaM elevation to be Ca2+-dependent. Our studies with CaM-specific siRNA and the CaM inhibitor calmidazolium chloride demonstrated CaM to be pro-apoptotic that initiated the downstream expression of CaMKIIg. Using the CaMKIIg-targeted siRNA, specific inhibitor KN-93 and its inactive structural analogue KN-92 we report CaM-CaMKIIg signalling to be critical for apoptosis of A. hydrophila-infected HKM. Inhibitor studies further suggested the role of calpain-2 in CaMKIIg expression. CaMK Kinase (CaMKK), the other CaM dependent kinase exhibited no role in A. hydrophila-induced HKM apoptosis. We report increased production of intracellular cAMP in infected HKM and our results with KN-93 or KN-92 implicate the role of CaMKIIg in cAMP production. Using siRNA to PKACA, the catalytic subunit of PKA, anti-PKACA antibody and H-89, the specific inhibitor for PKA we prove the pro-apoptotic involvement of cAMP/PKA pathway in the pathogenicity of A. hydrophila. Our inhibitor studies coupled with siRNA approach further implicated the role of cAMP/PKA in activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2). We conclude that the alteration in intracellular Ca2+ levels initiated by A. hydrophila activates CaM and calpain-2; both pathways converge on CaMKIIg which in turn induces cAMP/PKA mediated ERK 1/2 phosphorylation leading to caspase-3 mediated apoptosis of infected HKM. Aeromonas hydrophila is a natural fish pathogen and is known to induce apoptosis of HKM. Head kidney is an important immune-organ in fish and HKM are critical for immunity against the invading pathogen. The mechanisms of cell death induced by A. hydrophila are incompletely characterized. We have studied the role of Ca2+-dependent signalling pathways in the induction of A. hydrophila-induced HKM apoptosis. We observed that A. hydrophila infection led to increased CaM expression in infected HKM which was Ca2+-dependent. The inhibitor and siRNA studies suggested CaM to be pro-apoptotic and triggered CaMKIIg expression in the infected HKM. Calpain-2 appeared to influence CaMKIIg expression. However, further studies are needed to understand the process. We report that the CaM-CaMKIIg pathway is important for initiating cAMP production within the infected HKM. The pro-apoptotic activation of cAMP dependent PKA was quite evident. The activation of ERK 1/2 was observed in the HKM and results clearly suggested the pro-active role of cAMP/PKA in the process. Thus we conclude that CaM-CaMKIIg initiates the cAMP/PKA pathway that induces ERK 1/2 phosphorylation to promote caspase-3 mediated apoptosis of the A. hydrophila-infected HKM.
Collapse
|
8
|
Pakshirajan K, Izquierdo M, Lens PNL. Arsenic(III) Removal at Low Concentrations by Biosorption usingPhanerochaete chrysosporiumPellets. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.723102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Banerjee C, Goswami R, Verma G, Datta M, Mazumder S. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:323-333. [PMID: 22366184 DOI: 10.1016/j.dci.2012.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.
Collapse
Affiliation(s)
- Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
10
|
Do Candida spp. "read" Nietzsche? Can xenobiotics modulate their aggressiveness? Proposition that chemicals may interfere in their virulence attributes. Mycopathologia 2011; 173:69-71. [PMID: 21986675 DOI: 10.1007/s11046-011-9482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
Abstract
As well as the host, opportunist Candida spp. enface all sorts of exogenous chemicals, so-called xenobiotics. It is plausible that xenobiotics exert some effects on such microorganisms; among them, the modulation of virulence attributes.
Collapse
|