1
|
Li X, Ma Y, Li G, Jin G, Xu L, Li Y, Wei P, Zhang L. Leprosy: treatment, prevention, immune response and gene function. Front Immunol 2024; 15:1298749. [PMID: 38440733 PMCID: PMC10909994 DOI: 10.3389/fimmu.2024.1298749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yun Ma
- Chronic Infectious Disease Control Section, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Guoli Li
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guangjie Jin
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Li Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lianhua Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
2
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Tanigawa K, Kiriya M, Hayashi Y, Shinden Y, Kijima Y, Natsugoe S, Sumimoto T, Morimoto-Kamata R, Yui S, Hama K, Yokoyama K, Nakamura Y, Suzuki K, Nojiri H, Inoue K, Karasawa K. Cathepsin G-induced malignant progression of MCF-7 cells involves suppression of PAF signaling through induced expression of PAFAH1B2. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159164. [PMID: 35462067 DOI: 10.1016/j.bbalip.2022.159164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Hayashi
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan; Department of Breast Surgery, School of Medicine, Fujita Health University, Toyooka-shi, Aichi 470-1192, Japan
| | - Shoji Natsugoe
- Department of Neurosurgery, Kajiki-Onsen Hospital, Aira-shi, Kagoshima 899-5241, Japan
| | - Takahiro Sumimoto
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita 879-5593, Japan
| | - Riyo Morimoto-Kamata
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yui
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Nakamura
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hisao Nojiri
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keizo Inoue
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ken Karasawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
4
|
Tanigawa K, Luo Y, Kawashima A, Kiriya M, Nakamura Y, Karasawa K, Suzuki K. Essential Roles of PPARs in Lipid Metabolism during Mycobacterial Infection. Int J Mol Sci 2021; 22:ijms22147597. [PMID: 34299217 PMCID: PMC8304230 DOI: 10.3390/ijms22147597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
5
|
Tanigawa K, Hayashi Y, Hama K, Yamashita A, Yokoyama K, Luo Y, Kawashima A, Maeda Y, Nakamura Y, Harada A, Kiriya M, Karasawa K, Suzuki K. Mycobacterium leprae promotes triacylglycerol de novo synthesis through induction of GPAT3 expression in human premonocytic THP-1 cells. PLoS One 2021; 16:e0249184. [PMID: 33770127 PMCID: PMC7997041 DOI: 10.1371/journal.pone.0249184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium leprae (M. leprae) is the etiological agent of leprosy, and the skin lesions of lepromatous leprosy are filled with numerous foamy or xanthomatous histiocytes that are parasitized by M. leprae. Lipids are an important nutrient for the intracellular survival of M. leprae. In this study, we attempted to determine the intracellular lipid composition and underlying mechanisms for changes in host cell lipid metabolism induced by M. leprae infection. Using high-performance thin-layer chromatography (HPTLC), we demonstrated specific induction of triacylglycerol (TAG) production in human macrophage THP-1 cells following M. leprae infection. We then used [14C] stearic acid tracing to show incorporation of this newly synthesized host cell TAG into M. leprae. In parallel with TAG accumulation, expression of host glycerol-3-phosphate acyltransferase 3 (GPAT3), a key enzyme in de novo TAG synthesis, was significantly increased in M. leprae-infected cells. CRISPR/Cas9 genome editing of GPAT3 in THP-1 cells (GPAT3 KO) dramatically reduced accumulation of TAG following M. leprae infection, intracellular mycobacterial load, and bacteria viability. These results together suggest that M. leprae induces host GPAT3 expression to facilitate TAG accumulation within macrophages to maintain a suitable environment that is crucial for intracellular survival of these bacilli.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yasuhiro Hayashi
- Department of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Kotaro Hama
- Department of Physical Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Atsushi Yamashita
- Department of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Physical Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ayako Harada
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo, Japan
| |
Collapse
|
6
|
Yasmin H, Varghese PM, Bhakta S, Kishore U. Pathogenesis and Host Immune Response in Leprosy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:155-177. [PMID: 34661895 DOI: 10.1007/978-3-030-67452-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leprosy is an ancient insidious disease caused by Mycobacterium leprae, where the skin and peripheral nerves undergo chronic granulomatous infections, leading to sensory and motor impairment with characteristic deformities. Susceptibility to leprosy and its disease state are determined by the manifestation of innate immune resistance mediated by cells of monocyte lineage. Due to insufficient innate resistance, granulomatous infection is established, influencing the specific cellular immunity. The clinical presentation of leprosy ranges between two stable polar forms (tuberculoid to lepromatous) and three unstable borderline forms. The tuberculoid form involves Th1 response, characterized by a well demarcated granuloma, infiltrated by CD4+ T lymphocytes, containing epitheloid and multinucleated giant cells. In the lepromatous leprosy, there is no characteristic granuloma but only unstructured accumulation of ineffective macrophages containing engulfed pathogens. Th1 response, characterised by IFN-γ and IL-2 production, activates macrophages in order to kill intracellular pathogens. Conversely, a Th2 response, characterized by the production of IL-4, IL-5 and IL-10, helps in antibody production and consequently downregulates the cell-mediated immunity induced by the Th1 response. M. lepare has a long generation time and its inability to grow in culture under laboratory conditions makes its study challenging. The nine-banded armadillo still remains the best clinical and immunological model to study host-pathogen interaction in leprosy. In this chapter, we present cellular morphology and the genomic uniqueness of M. leprae, and how the pathogen shows tropism for Schwann cells, macrophages and dendritic cells.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Praveen Mathews Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
7
|
Luo Y, Tanigawa K, Kawashima A, Ishido Y, Ishii N, Suzuki K. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages. PLoS Negl Trop Dis 2020; 14:e0008850. [PMID: 33075048 PMCID: PMC7595635 DOI: 10.1371/journal.pntd.0008850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). In lepromatous leprosy (LL), skin macrophages, harboring extensive bacterial multiplication, gain a distinctive foamy appearance due to increased intracellular lipid load. To determine the mechanism by which M. leprae modifies the lipid homeostasis in host cells, an in vitro M. leprae infection system, using human macrophage precursor THP-1 cells and M. leprae prepared from the footpads of nude mice, was employed. RNA extracted from skin smear samples of patients was used to investigate host gene expressions before and after multidrug therapy (MDT). We found that a cluster of peroxisome proliferator-activated receptor (PPAR) target genes associated with adipocyte differentiation were strongly induced in M. leprae-infected THP-1 cells, with increased intracellular lipid accumulation. PPAR-δ and PPAR-γ expressions were induced by M. leprae infection in a bacterial load-dependent manner, and their proteins underwent nuclear translocalization after infection, indicating activation of PPAR signaling in host cells. Either PPAR-δ or PPAR-γ antagonist abolished the effect of M. leprae to modify host gene expressions and inhibited intracellular lipid accumulation in host cells. M. leprae-specific gene expressions were detected in the skin smear samples both before and after MDT, whereas PPAR target gene expressions were dramatically diminished after MDT. These results suggest that M. leprae infection activates host PPAR signaling to induce an array of adipocyte differentiation-associated genes, leading to accumulation of intracellular lipids to accommodate M. leprae parasitization. Certain PPAR target genes in skin lesions may serve as biomarkers for monitoring treatment efficacy. Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). Lipid-enriched intracellular environment is important for the parasitization of M. leprae. During anti-leprosy treatment, chemotherapy-killed bacilli can remain in host tissues for a long time, making it difficult to determine the treatment efficacy by Zeihl-Nelson’s staining-based bacterial index (BI) test. In this study, we found that host peroxisome proliferator-activated receptor (PPAR) signaling is responsible for modification of intracellular lipid homeostasis to accommodate M. leprae parasitization in host macrophages. In skin smear samples of patients, M. leprae-derived gene expressions were detected both before and after anti-leprosy treatment, whereas human PPAR target gene expressions were dramatically diminished after the treatment. These results further our understanding of M. leprae intracellular parasitization, and suggest that PPAR signaling may be a novel therapeutic target for treating M. leprae infection and monitoring the expressions of certain PPAR target genes in skin lesions may be helpful to evaluate the treatment efficacy and recurrent infection.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Rastogi R, Kaur G, Maan P, Bhatnagar A, Narang T, Dogra S, Kaur J. Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol 2019; 68:1629-1640. [PMID: 31553301 DOI: 10.1099/jmm.0.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/β hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.
Collapse
Affiliation(s)
- Ruchi Rastogi
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Gurkamaljit Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Pratibha Maan
- Present address: Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.,Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Tarun Narang
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
9
|
Wang D, Zhang DF, Li GD, Bi R, Fan Y, Wu Y, Yu XF, Long H, Li YY, Yao YG. A pleiotropic effect of the APOE gene: association of APOE polymorphisms with multibacillary leprosy in Han Chinese from Southwest China. Br J Dermatol 2018; 178:931-939. [PMID: 28977675 DOI: 10.1111/bjd.16020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Patients with leprosy have a very low risk of Alzheimer disease (AD) and β-amyloid (Aβ) deposition is significantly lower in the brain tissue of elderly patients with leprosy compared with age-matched controls. Apolipoprotein E (ApoE) plays a critical role in lipid metabolic pathways and in the brain, facilitating the proteolytic clearance of Aβ. We hypothesized that APOE confers risk of leprosy as lipid metabolism is involved in Mycobacterium leprae infection. OBJECTIVES To investigate the potential genetic associations between APOE and leprosy in two independent Chinese case-control cohorts from the Yuxi and Wenshan prefectures, Yunnan Province of Southwest China. METHODS Five APOE single-nucleotide polymorphisms (SNPs) were analysed in 1110 individuals (527 patients and 583 controls) from the Yuxi prefecture using a SNaPshot assay. Genetic variations in the entire APOE exons were screened in 1788 individuals (798 patients and 990 controls) from the Wenshan prefecture using next-generation sequencing technology. RESULTS The AD-associated SNPs rs405509 and rs439401 increased the risk of leprosy per se and multibacillary leprosy (P < 0·005), but the APOE-ε4 allele did not. The SNPs rs405509 and rs439401 were cis expression quantitative trait loci (eQTL) for APOE expression in human skin. Differential APOE mRNA expression was observed in skin lesions of patients with type I reaction leprosy and those with multibacillary leprosy. APOE and related lipid genes are involved in an interaction network with leprosy susceptibility genes. CONCLUSIONS The APOE gene is associated with leprosy, most likely by regulating lipid-metabolism-related genes.
Collapse
Affiliation(s)
- D Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - D-F Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - G-D Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - R Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Y Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Y Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - X-F Yu
- Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China
| | - H Long
- Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China
| | - Y-Y Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
10
|
Abstract
Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.
Collapse
Affiliation(s)
- Gurkamaljit Kaur
- Research Scholar, Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
de Macedo CS, Anderson DM, Pascarelli BM, Spraggins JM, Sarno EN, Schey KL, Pessolani MCV. MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1374-85. [PMID: 26634971 DOI: 10.1002/jms.3708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/17/2015] [Indexed: 05/28/2023]
Abstract
Leprosy still represents a health problem in several countries. Affecting skin and peripheral nerves, it may lead to permanent disabilities. Disturbances on skin lipid metabolism in leprosy were already observed; however, the localization and distribution of lipids could not be accessed. The role of lipids on infectious disease has been fully addressed only recently, as they directly influence immune response. Matrix-assisted laser desorption/ionization imaging mass spectrometry provides a powerful tool to localize and identify lipids in tissues. The aim of this work was to study and compare the changes in lipid distribution of skin biopsies taken from leprosy patients before and after multidrug therapy (MDT). Different species of phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin and phosphatidylcholine were detected. Differences in skin lipid signal intensities, as well as in their localization, were observed before and after MDT in every patient. In general, lipid distribution in the skin after MDT had a pattern similar to control skin samples, where most of the lipids were located in the upper part of the dermis and epidermis. This study opens paths to a better understanding of lipid functions in leprosy pathogenesis and immune response.
Collapse
Affiliation(s)
- Cristiana S de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Oswaldo Cruz Institute (IOC) - Cellular Microbiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - David M Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Bernardo M Pascarelli
- Oswaldo Cruz Institute (IOC) - Leprosy Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Euzenir N Sarno
- Oswaldo Cruz Institute (IOC) - Leprosy Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Maria Cristina V Pessolani
- Oswaldo Cruz Institute (IOC) - Cellular Microbiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Barisch C, Paschke P, Hagedorn M, Maniak M, Soldati T. Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 2015; 17:1332-49. [PMID: 25772333 DOI: 10.1111/cmi.12437] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 01/15/2023]
Abstract
Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium-containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV-2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Peggy Paschke
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Luo Y, Hara T, Ishido Y, Yoshihara A, Oda K, Makino M, Ishii N, Hiroi N, Suzuki K. Rapid preparation of high-purity nuclear proteins from a small number of cultured cells for use in electrophoretic mobility shift assays. BMC Immunol 2014; 15:586. [PMID: 25527077 PMCID: PMC4339431 DOI: 10.1186/s12865-014-0062-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Highly purified nuclear protein is required when using an electrophoretic mobility shift assay (EMSA) to study transcription factors, e.g. nuclear factor-κB (NF-κB), a major transcription factor that regulates both innate and adaptive immune responses following infection. Although many protocols have been developed for nuclear protein extraction, they are not necessarily optimized for use in EMSA, often require a large number of cells and long processing times, and do not always result in complete separation of the nuclear and cytoplasmic fractions. RESULTS We have developed a simple, rapid and cost-effective method to prepare highly purified nuclear proteins from a small number of both suspended and adherent cultured cells that yields nuclear proteins comparable to those prepared by a standard large-scale method. The efficiency of the method was demonstrated by using EMSA to show the successful detection, in multilple concurrent samples, of NF-κB activation upon tetradecanoyl phorbol acetate (TPA) stimulation. CONCLUSIONS This method requires only a small number of cells and no specialized equipment. The steps have been simplified, resulting in a short processing time, which allows researchers to process multiple samples simultaneously and quickly. This method is especially optimized for use in EMSA, and may be useful for other applications that include proteomic analysis.
Collapse
Affiliation(s)
- Yuqian Luo
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Takeshi Hara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Yuko Ishido
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Aya Yoshihara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Kenzaburo Oda
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Masahiko Makino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| | - Naoki Hiroi
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, 189-0002, Tokyo, Japan.
| |
Collapse
|
14
|
Abstract
Mycobacterium leprae and Mycobacterium tuberculosis antimicrobial resistance has been followed with great concern during the last years, while the need for new drugs able to control leprosy and tuberculosis, mainly due to extensively drug-resistant tuberculosis (XDR-TB), is pressing. Our group recently showed that M. leprae is able to induce lipid body biogenesis and cholesterol accumulation in macrophages and Schwann cells, facilitating its viability and replication. Considering these previous results, we investigated the efficacies of two statins on the intracellular viability of mycobacteria within the macrophage, as well as the effect of atorvastatin on M. leprae infections in BALB/c mice. We observed that intracellular mycobacteria viability decreased markedly after incubation with both statins, but atorvastatin showed the best inhibitory effect when combined with rifampin. Using Shepard's model, we observed with atorvastatin an efficacy in controlling M. leprae and inflammatory infiltrate in the BALB/c footpad, in a serum cholesterol level-dependent way. We conclude that statins contribute to macrophage-bactericidal activity against Mycobacterium bovis, M. leprae, and M. tuberculosis. It is likely that the association of statins with the actual multidrug therapy effectively reduces mycobacterial viability and tissue lesion in leprosy and tuberculosis patients, although epidemiological studies are still needed for confirmation.
Collapse
|
15
|
Mattos KA, Oliveira VCG, Berrêdo-Pinho M, Amaral JJ, Antunes LCM, Melo RCN, Acosta CCD, Moura DF, Olmo R, Han J, Rosa PS, Almeida PE, Finlay BB, Borchers CH, Sarno EN, Bozza PT, Atella GC, Pessolani MCV. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment. Cell Microbiol 2014; 16:797-815. [PMID: 24552180 PMCID: PMC4262048 DOI: 10.1111/cmi.12279] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.
Collapse
Affiliation(s)
- Katherine A Mattos
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
New findings in the pathogenesis of leprosy and implications for the management of leprosy. Curr Opin Infect Dis 2014; 26:413-9. [PMID: 23982232 DOI: 10.1097/qco.0b013e3283638b04] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review focuses on recent work in leprosy pathogenesis. New research of both innate and adaptive immune responses to Mycobacterium leprae is described. The proposition that Mycobacterium lepromatosis is a new species causing leprosy is discussed. RECENT FINDINGS Modulation of the lipid metabolism and reprogramming of adult Schwann cells have both been suggested as mechanisms used by M. leprae to disseminate the disease. New markers associated with localized, disseminated disease or the occurrences of leprosy reactions include the human interferons, CD163, microRNA-21, NOD2, galectin-3 and toll-like receptor 4. The role of keratinocytes instead of macrophages is underlined in the pathogenesis of leprosy. Adaptive immunity reports focus on the role of T regulatory cells and cytokines secreted by T helper cells in leprosy. Finally, a newly identified species named M. lepromatosis has been detected in patients with leprosy and severe erythema nodosum leprosum. SUMMARY Novel biological pathways have been identified to be associated with the clinical phenotype of leprosy or the occurrence of leprosy reactions. Future work should include larger numbers of clinical samples from across the leprosy spectrum in order to give new insights in the pathogenesis and management of the disease.
Collapse
|
17
|
Degang Y, Nakamura K, Akama T, Ishido Y, Luo Y, Ishii N, Suzuki K. Leprosy as a model of immunity. Future Microbiol 2014; 9:43-54. [DOI: 10.2217/fmb.13.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ABSTRACT: Leprosy displays a spectrum of clinical manifestations, such as lepromatous and tuberculoid leprosy, and type I and II lepra reactions, which are thought to be a reflection of the host’s immunological response against Mycobacterium leprae. Therefore, differential recognition of M. leprae, as well as its degraded components, and subsequent activation of cellular immunity will be an important factor for the clinical manifestation of leprosy. Although M. leprae mainly parasitizes tissue macrophages in the dermis and the Schwann cells of peripheral nerves, the presence of M. leprae in other organs, such as the liver, may also play important roles in the further modification of seesaw-like bipolar phenotypes of leprosy. Thus, leprosy is an exciting model for investigating the role of the human immune system in host defense and susceptibility to infection.
Collapse
Affiliation(s)
- Yang Degang
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
- Department of Phototherapy, Shanghai Dermatology Hospital, 1278 Bao De Road, Shanghai 200443, China
| | - Kazuaki Nakamura
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
- Department of Pharmacology, National Research Institute for Child Health & Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8538, Japan
| | - Takeshi Akama
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Yuko Ishido
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Yuqian Luo
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Koichi Suzuki
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| |
Collapse
|
18
|
Abstract
In the current issue of Infection and Immunity, Caire-Brändli and coworkers (Infect. Immun. 82:476-490, 2014, doi:10.1128/IAI.01196-13) describe a novel cell system for studying mycobacterial interactions with foamy macrophages and provide a magnificent series of electron microscopy-based observations providing major insight into the microbiology and cell biology of these interactions.
Collapse
|
19
|
Degang Y, Akama T, Hara T, Tanigawa K, Ishido Y, Gidoh M, Makino M, Ishii N, Suzuki K. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages. PLoS Negl Trop Dis 2012; 6:e1936. [PMID: 23236531 PMCID: PMC3516583 DOI: 10.1371/journal.pntd.0001936] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/20/2012] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine. Leprosy, caused by Mycobacterium leprae (M. leprae), is an ancient infectious disease that remains the leading infectious cause of disability. After infection, M. leprae lives inside host macrophages that contain a large amount of lipids, which is thought to be an essential microenvironment for M. leprae to survive in host cells. M. leprae infection increases lipid accumulation in macrophages and decreases the metabolic breakdown of lipids (catabolism). In addition, the treatment of leprosy with multidrug therapy (MDT) reverses the effect of infection on the modulation of lipid metabolism. We therefore aimed to use cultured human macrophage cells to determine which of the three MDT drugs (clofazimine, dapsone, or rifampicin) is responsible for this effect. We found that only clofazimine affects lipid accumulation and catabolism in M. leprae-infected cells in vitro. The amounts of lipids accumulated in the cells decreased when clofazimine was added to the cell culture medium. Clofazimine also activated immune responses in M. leprae-infected cells. These results suggest that the effectiveness of clofazimine against leprosy is due to the modulation of lipid metabolism and activation of immune reactions in M. leprae-infected host cells.
Collapse
Affiliation(s)
- Yang Degang
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|