1
|
Hendrix EK, Sha J, Kilgore PB, Neil BH, Chopra AK. Combination of live attenuated and adenovirus-based vaccines completely protects interferon gamma (IFNγ) knockout mice against pneumonic plague. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627261. [PMID: 39713400 PMCID: PMC11661069 DOI: 10.1101/2024.12.06.627261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of Yersinia pestis CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental Y. pestis CO92. All vaccinated mice generated robust humoral and cellular immune responses. The immunized WT mice showed overall better antibody responses in both serum and bronchoalveolar lavage fluid with much higher percentages of polyfunctional T cell populations. On the other hand, vaccinated IFNγ KO mice displayed better B cell activity in germinal centers with higher percentages of activated antigen specific T cells and memory T cells. In addition, depletion of IFNγ and tumor necrosis factor alpha (TNFα) from immunized WT mice prior to and during infection did not reduce protection against pulmonary Y. pestis CO92 challenge. These data demonstrated a dispensable nature of IFNγ in mediating protection by the aforementioned vaccines. This is the first detailed immunogenicity study of two plague LAVs administered either alone or in combination with an Ad5-YFV vaccine in a prime-boost immunization strategy in IFNγ KO mice. Further, by combining advantages of live-attenuated and adenovirus-based vaccines, augmentation of generalized immune responses were observed which could be beneficial in providing long-lasting immunity in the host.
Collapse
|
2
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Rosenzweig JA, Hendrix EK, Chopra AK. Plague vaccines: new developments in an ongoing search. Appl Microbiol Biotechnol 2021; 105:4931-4941. [PMID: 34142207 PMCID: PMC8211537 DOI: 10.1007/s00253-021-11389-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
As the reality of pandemic threats challenges humanity, exemplified during the ongoing SARS-CoV-2 infections, the development of vaccines targeting these etiological agents of disease has become increasingly critical. Of paramount concern are novel and reemerging pathogens that could trigger such events, including the plague bacterium Yersinia pestis. Y. pestis is responsible for more human deaths than any other known pathogen and exists globally in endemic regions of the world, including the four corners region and Northern California in the USA. Recent cases have been scattered throughout the world, including China and the USA, with serious outbreaks in Madagascar during 2008, 2013-2014, and, most recently, 2017-2018. This review will focus on recent advances in plague vaccine development, a seemingly necessary endeavor, as there is no Food and Drug Administration-licensed vaccine available for human distribution in western nations, and that antibiotic-resistant strains are recovered clinically or intentionally developed. Progress and recent development involving subunit, live-attenuated, and nucleic acid-based plague vaccine candidates will be discussed in this review. KEY POINTS: • Plague vaccine development remains elusive yet critical. • DNA, animal, and live-attenuated vaccine candidates gain traction.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA.
| | - Emily K Hendrix
- Departmnet of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Departmnet of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Yersinia pestis Plasminogen Activator. Biomolecules 2020; 10:biom10111554. [PMID: 33202679 PMCID: PMC7696990 DOI: 10.3390/biom10111554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.
Collapse
|
5
|
Andersson JA, Sha J, Kirtley ML, Reyes E, Fitts EC, Dann SM, Chopra AK. Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics. Antimicrob Agents Chemother 2018; 62:e01943-17. [PMID: 29109161 PMCID: PMC5740341 DOI: 10.1128/aac.01943-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Earlier, we reported that three Food and Drug Administration-approved drugs, trifluoperazine (TFP; an antipsychotic), amoxapine (AXPN; an antidepressant), and doxapram (DXP; a breathing stimulant), identified from an in vitro murine macrophage cytotoxicity screen, provided mice with 40 to 60% protection against pneumonic plague when administered at the time of infection for 1 to 3 days. In the present study, the therapeutic potential of these drugs against pneumonic plague in mice was further evaluated when they were administered at up to 48 h postinfection. While the efficacy of TFP was somewhat diminished as treatment was delayed to 24 h, the protection of mice with AXPN and DXP increased as treatment was progressively delayed to 24 h. At 48 h postinfection, these drugs provided the animals with significant protection (up to 100%) against challenge with the agent of pneumonic or bubonic plague when they were administered in combination with levofloxacin. Likewise, when they were used in combination with vancomycin, all three drugs provided mice with 80 to 100% protection from fatal oral Clostridium difficile infection when they were administered at 24 h postinfection. Furthermore, AXPN provided 40 to 60% protection against respiratory infection with Klebsiella pneumoniae when it was administered at the time of infection or at 24 h postinfection. Using the same in vitro cytotoxicity assay, we identified an additional 76/780 nonantibiotic drugs effective against K. pneumoniae For Acinetobacter baumannii, 121 nonantibiotic drugs were identified to inhibit bacterium-induced cytotoxicity in murine macrophages. Of these 121 drugs, 13 inhibited the macrophage cytotoxicity induced by two additional multiple-antibiotic-resistant strains. Six of these drugs decreased the intracellular survival of all three A. baumannii strains in macrophages. These results provided further evidence of the broad applicability and utilization of drug repurposing screening to identify new therapeutics to combat multidrug-resistant pathogens of public health concern.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily Reyes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sara M Dann
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
VanCleave TT, Pulsifer AR, Connor MG, Warawa JM, Lawrenz MB. Impact of Gentamicin Concentration and Exposure Time on Intracellular Yersinia pestis. Front Cell Infect Microbiol 2017; 7:505. [PMID: 29312891 PMCID: PMC5732358 DOI: 10.3389/fcimb.2017.00505] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022] Open
Abstract
The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens in vitro. More recent studies have demonstrated that aminoglycosides slowly penetrate eukaryotic cells and can even reach intracellular concentrations that inhibit intracellular bacteria. Therefore, important considerations, such as antibiotic concentration, incubation time, and cell type need to be made when designing the antibiotic protection assay to avoid potential false positive/negative observations. Yersinia pestis, which causes the human disease known as the plague, is a facultative intracellular pathogen that can infect and replicate in macrophages. Y. pestis is sensitive to gentamicin and this antibiotic is often employed in the antibiotic protection assay to study the Y. pestis intracellular life cycle. However, a large variety of gentamicin concentrations and incubation periods have been reported in the Y. pestis literature without a clear characterization of the potential influences that variations in the gentamicin protection assay could have on intracellular growth of this pathogen. This raised concerns that variations in the gentamicin protection assay could influence phenotypes and reproducibility of data. To provide a better understanding of the potential consequences that variations in the gentamicin protection assay could have on Y. pestis, we systematically examined the impact of multiple variables of the gentamicin protection assay on Y. pestis intracellular survival in macrophages. We found that prolonged incubation periods with low concentrations of gentamicin, or short incubation periods with higher concentrations of the antibiotic, have a dramatic impact on intracellular growth. Furthermore, the degree of sensitivity of intracellular Y. pestis to gentamicin was also cell type dependent. These data highlight the importance to empirically establish cell type specific gentamicin protection assays to avoid potential artificial data in Y. pestis intracellular studies.
Collapse
Affiliation(s)
- Tiva T VanCleave
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Amanda R Pulsifer
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Michael G Connor
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jonathan M Warawa
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
7
|
Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence. PLoS One 2016; 11:e0168089. [PMID: 27936190 PMCID: PMC5148098 DOI: 10.1371/journal.pone.0168089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics.
Collapse
|
8
|
Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. NPJ Vaccines 2016; 1:16020. [PMID: 29263858 PMCID: PMC5707884 DOI: 10.1038/npjvaccines.2016.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022] Open
Abstract
We showed recently that the live-attenuated Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants of Yersinia pestis CO92 provided short-term protection to mice against developing subsequent lethal pneumonic plague. These mutants were either deleted for genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB) and the attachment invasion locus (Ail) (Δlpp ΔmsbB Δail) or contained a modified version of the ail gene with diminished virulence (Δlpp ΔmsbB::ailL2). Here, long-term immune responses were first examined after intramuscular immunisation of mice with the above-mentioned mutants, as well as the newly constructed Δlpp ΔmsbB Δpla mutant, deleted for the plasminogen-activator protease (pla) gene instead of ail. Y. pestis-specific IgG levels peaked between day 35 and 56 in the mutant-immunised mice and were sustained until the last tested day 112. Splenic memory B cells peaked earlier (day 42) before declining in the Δlpp ΔmsbB::ailL2 mutant-immunised mice while being sustained for 63 days in the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice. Splenic CD4+ T cells increased in all immunised mice by day 42 with differential cytokine production among the immunised groups. On day 120, immunised mice were exposed intranasally to wild-type (WT) CO92, and 80–100% survived pneumonic challenge. Mice immunised with the above-mentioned three mutants had increased innate as well as CD4+ responses immediately after WT CO92 exposure, and coupled with sustained antibody production, indicated the role of both arms of the immune response in protection. Likewise, rats vaccinated with either Δlpp ΔmsbB Δail or the Δlpp ΔmsbB Δpla mutant also developed long-term humoral and cell-mediated immune responses to provide 100% protection against developing pneumonic plague. On the basis of the attenuated phenotype, the Δlpp ΔmsbB Δail mutant was recently excluded from the Centers for Disease Control and Prevention select agent list.
Collapse
|
9
|
A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:586-600. [PMID: 27170642 DOI: 10.1128/cvi.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.
Collapse
|