1
|
Ismail AM, Mosa MA, El-Ganainy SM. Chitosan-Decorated Copper Oxide Nanocomposite: Investigation of Its Antifungal Activity against Tomato Gray Mold Caused by Botrytis cinerea. Polymers (Basel) 2023; 15:polym15051099. [PMID: 36904340 PMCID: PMC10007424 DOI: 10.3390/polym15051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Owing to the remarkable antimicrobial potential of these materials, research into the possible use of nanomaterials as alternatives to fungicides in sustainable agriculture is increasingly progressing. Here, we investigated the potential antifungal properties of chitosan-decorated copper oxide nanocomposite (CH@CuO NPs) to control gray mold diseases of tomato caused by Botrytis cinerea throughout in vitro and in vivo trials. The nanocomposite CH@CuO NPs were chemically prepared, and size and shape were determined using Transmission Electron Microscope (TEM). The chemical functional groups responsible for the interaction of the CH NPs with the CuO NPs were detected using the Fourier Transform Infrared (FTIR) spectrophotometry. The TEM images confirmed that CH NPs have a thin and semitransparent network shape, while CuO NPs were spherically shaped. Furthermore, the nanocomposite CH@CuO NPs ex-habited an irregular shape. The size of CH NPs, CuO NPs and CH@CuO NPs as measured through TEM, were approximately 18.28 ± 2.4 nm, 19.34 ± 2.1 nm, and 32.74 ± 2.3 nm, respectively. The antifungal activity of CH@CuO NPs was tested at three concentrations of 50, 100 and 250 mg/L and the fungicide Teldor 50% SC was applied at recommended dose 1.5 mL/L. In vitro experiments revealed that CH@CuO NPs at different concentrations significantly inhibited the reproductive growth process of B. cinerea by suppressing the development of hyphae, spore germination and formation of sclerotia. Interestingly, a significant control efficacy of CH@CuO NPs against tomato gray mold was observed particularly at concentrations 100 and 250 mg/L on both detached leaves (100%) as well as the whole tomato plants (100%) when compared to the conventional chemical fungicide Teldor 50% SC (97%). In addition, the tested concentration 100 mg/L improved to be sufficient to guarantee a complete reduction in the disease's severity (100%) to tomato fruits from gray mold without any morphological toxicity. In comparison, tomato plants treated with the recommended dose 1.5 mL/L of Teldor 50% SC ensured disease reduction up to 80%. Conclusively, this research enhances the concept of agro-nanotechnology by presenting how a nano materials-based fungicide could be used to protect tomato plants from gray mold under greenhouse conditions and during the postharvest stage.
Collapse
Affiliation(s)
- Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (A.M.I.); (M.A.M.)
| | - Mohamed A. Mosa
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (A.M.I.); (M.A.M.)
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
2
|
Arumapperuma T, Li J, Hornung B, Soler NM, Goddard-Borger ED, Terrapon N, Williams SJ. A subfamily classification to choreograph the diverse activities within glycoside hydrolase family 31. J Biol Chem 2023; 299:103038. [PMID: 36806678 PMCID: PMC10074150 DOI: 10.1016/j.jbc.2023.103038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The Carbohydrate-Active Enzyme classification groups enzymes that breakdown, assemble, or decorate glycans into protein families based on sequence similarity. The glycoside hydrolases (GH) are arranged into over 170 enzyme families, with some being very large and exhibiting distinct activities/specificities towards diverse substrates. Family GH31 is a large family that contains more than 20,000 sequences with a wide taxonomic diversity. Less than 1% of GH31 members are biochemically characterized and exhibit many different activities that include glycosidases, lyases, and transglycosidases. This diversity of activities limits our ability to predict the activities and roles of GH31 family members in their host organism and our ability to exploit these enzymes for practical purposes. Here, we established a subfamily classification using sequence similarity networks that was further validated by a structural analysis. While sequence similarity networks provide a sequence-based separation, we obtained good segregation between activities among the subfamilies. Our subclassification consists of 20 subfamilies with sixteen subfamilies containing at least one characterized member and eleven subfamilies that are monofunctional based on the available data. We also report the biochemical characterization of a member of the large subfamily 2 (GH31_2) that lacked any characterized members: RaGH31 from Rhodoferax aquaticus is an α-glucosidase with activity on a range of disaccharides including sucrose, trehalose, maltose, and nigerose. Our subclassification provides improved predictive power for the vast majority of uncharacterized proteins in family GH31 and highlights the remaining sequence space that remains to be functionally explored.
Collapse
Affiliation(s)
- Thimali Arumapperuma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Jinling Li
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Bastian Hornung
- AFMB, UMR 7257 CNRS Aix-Marseille Univ., USC 1408 INRAE, Marseille, France
| | - Niccolay Madiedo Soler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicolas Terrapon
- AFMB, UMR 7257 CNRS Aix-Marseille Univ., USC 1408 INRAE, Marseille, France
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Hawar SN, Taha ZK, Hamied AS, Al-Shmgani HS, Sulaiman GM, Elsilk SE. Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int J Biomater 2023; 2023:2411555. [PMID: 37122583 PMCID: PMC10139814 DOI: 10.1155/2023/2411555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%, 30%, 45%, and 60%, for which the percentages of inhibition of the radial growth were 37.5, 50, 52.5, and 56.25%, respectively. The dual culture method was conducted on PDA medium to observe the antagonistic nature of the antibiotic impacts of Paecilomyces sp. towards the pathogenic fungus. The strength of the antagonistic impacts was manifested by a 76.25% inhibition rate, on a scale of 4 antagonistic levels. Ethyl acetate extract of Paecilomyces sp. was obtained by liquid-liquid partition of the broth containing the fungus. Gas chromatography-mass spectrometry (GC-MS) analysis identified the presence of important chemical components e.g., (E) 9, cis-13-Octadecenoic acid, methyl ester (48.607), 1-Heptacosanol, 1-Nonadecene, Cyclotetracosane (5.979), 1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester, di-sec-butyl phthalate (3.829), 1-Nonadecene, n-Nonadecanol-1, Behenic alcohol (3.298), n-Heptadecanol-1, 1-hexadecanol, n-Pentadecanol (2.962), Dodecanoic acid (2.849), 2,3-Dihydroxypropyl ester, oleic acid, 9-Octadecenal, and (Z)-(2.730). These results suggest that secondary metabolites of the endophytic Paecilomyces possess antifungal properties and could potentially be utilized in various applications, such as environmental protection and medicine.
Collapse
Affiliation(s)
- Sumaiya Naeema Hawar
- Biology Department, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Zainab K. Taha
- Ministry of Education, First Resafa Education Directorate, Al-Mutamizat High School for Girls, Baghdad, Iraq
| | - Atyaf Saied Hamied
- Biology Department, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Hanady S. Al-Shmgani
- Biology Department, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sobhy E. Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Exploring the Potential Applications of Paecilomyceslilacinus 112. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microorganisms are widely used to obtain biostimulants that can facilitate the assimilation of nutrients, ensuring high crop yield and quality. A particular category of biostimulants are protein hydrolyzates (PH), obtained from microbial cultures grown on a nutrient medium. In the present study, Paecilomyces lilacinus 112, an endophytic fungus isolated from soil, was tested to determine its effect on the growth promotion of tomato seedlings in greenhouse conditions. Additionally, other beneficial features of the P.lilacinus isolate were evaluated via several tests: antagonism against plant pathogenic fungi, production of secondary useful metabolites, and solubilization of vital micronutrients. Out of the tested pathogens, P.lilacinus exhibited the highest antifungal activity against a Cladosporium isolate (inhibition of 66.3%), followed by Rhizoctonia. solani (52.53%), and Sclerotinia sclerotiorum (50.23%). Paecilomyceslilacinus 112 was able to secrete hydrolytic enzymes and siderophores, and solubilize zinc and phosphorus. In the tomato treatment, the application of PH obtained from fungal cultivation on a feather medium led to the following increases in plant growth parameters: 3.54-fold in plant biomass; 3.26-fold in plant height, 1.28-fold in plant diameter; 1.5-fold in the number of branches/plant; and 1.43-fold in the number of leaves/plant, as compared to water treatment. The application of this isolate can be of benefit to bioeconomy because keratin wastes are valorized and returned, in agriculture, contributing to renewable natural resources.
Collapse
|
5
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum. Microbiol Res 2021; 249:126773. [PMID: 33940365 DOI: 10.1016/j.micres.2021.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Purpureocillium lilacinum (formerly Paecilomyces lilacinus) is widely commercialized for controlling plant-parasitic nematodes and represents a potential cell factory for enzyme production. This nematicidal fungus is intrinsically resistant to common antifungal agents used for genetic transformation. Therefore, molecular investigations in P. lilacinum are still limited so far. In the present study, we have established a new Agrobacterium tumefaciens-mediated transformation (ATMT) system in P. lilacinum based on the uridine/uracil auxotrophic mechanism. Here, uridine/uracil auxotrophic mutants were simply generated via UV irradiation instead of a complicated genetic approach for the pyrG gene deletion. A stable uridine/uracil auxotrophic mutant was then selected as a recipient for fungal transformation. We further indicated that the pyrG gene from Aspergillus niger can be used as a selectable marker for genetic transformation of P. lilacinum. Under optimized conditions for ATMT, the transformation efficiency reached 2873 ± 224 transformants per 106 spores. Using the constructed ATMT system, we succeeded in expressing the DsRed reporter gene in P. lilacinum. Additionally, we have identified a very promising mutant for chitinase production from a collection of T-DNA insertion transformants. This mutant possesses a special phenotype of hyper-branching mycelium and produces more conidia in comparison to the wild strain. Conclusively, our ATMT system can be exploited for overexpression of target genes or for T-DNA insertion mutagenesis in the agriculturally important fungus P. lilacinum. The genetic approach in the present work may also be applied for developing similar ATMT systems in other fungi, especially for fungi that their genome databases are currently not available.
Collapse
|
7
|
Elsherbiny EA, Taher MA, Abd El-Aziz MH, Mohamed SY. Action mechanisms and biocontrol of Purpureocillium lilacinum against green mould caused by Penicillium digitatum in orange fruit. J Appl Microbiol 2021; 131:1378-1390. [PMID: 33484589 DOI: 10.1111/jam.15016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
AIMS The present study evaluated, for the first time, the inhibitory effects of the filtrate of Purpureocillium lilacinum against Penicillium digitatum. METHODS AND RESULTS No direct contact between P. lilacinum and P. digitatum was observed during the dual culture test and the inhibition zone was 6·1 mm. The filtrate of P. lilacinum completely inhibited P. digitatum growth and spore germination at the concentration of 64%. The filtrate increased the permeability of the cell membrane and the content of MDA in P. digitatum. The ergosterol content in P. digitatum was strongly inhibited at 32% by 81·1%. The green mould incidence and severity in filtrate-treated fruit at 64% were 71·7 and 80·7% lower than in the control, respectively. The filtrate enhanced the activity of PAL, PPO and POD enzymes in orange fruit. The POD and PAL gene expression levels were significantly upregulated in the fruit treated with the filtrate. CONCLUSIONS This study indicated that the antifungal mechanism of P. lilacinum filtrate against P. digitatum is mainly by the damage of the fungal cell membrane and its components. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides the pioneer evidence on the application of P. lilacinum filtrate as a novel biocontrol agent for orange green mould.
Collapse
Affiliation(s)
- E A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M A Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M H Abd El-Aziz
- Department of Genetics, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - S Y Mohamed
- Horticulture Research Institute, Agricultural Research Center, Cairo, Egypt
| |
Collapse
|
8
|
Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. PLANTS 2020; 9:plants9121746. [PMID: 33321854 PMCID: PMC7763231 DOI: 10.3390/plants9121746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.
Collapse
|
9
|
Li XQ, Dong QJ, Xu K, Yuan XL, Liu XM, Zhang P. Cytotoxic xanthones from the plant endophytic fungus Paecilamyces sp. TE-540. Nat Prod Res 2020; 35:6134-6140. [PMID: 33016130 DOI: 10.1080/14786419.2020.1828410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One new xanthone, chryxanthone C (1), together with four known analogues (2-5), were isolated from the cultures of Paecilamyces sp. TE-540, an endophytic fungus obtained from the leaves of Nicotiana tabacum L. The structure of 1 was elucidated by comprehensive spectral analysis including HRESIMS and 1D/2D NMR, which were confirmed by Cu Kα X-ray crystallography. Compound 1 featured an unusual dihydropyran ring fused to an aromatic ring, rather than the commonly occurring prenyl moiety. The cytotoxicity of compounds 1-5 were evaluated against five human tumour cell lines and 4 exhibited moderate to strong cytotoxicities with IC50 values ranging from 5.6 to 14.2 µM.
Collapse
Affiliation(s)
- Xiu-Qi Li
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quan-Jiang Dong
- Technical Centre, ETSONG (Qingdao) Industry Co., Ltd, Qingdao, China
| | - Kuo Xu
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Long Yuan
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xin-Min Liu
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
10
|
Li XQ, Xu K, Liu XM, Zhang P. A Systematic Review on Secondary Metabolites of Paecilomyces Species: Chemical Diversity and Biological Activity. PLANTA MEDICA 2020; 86:805-821. [PMID: 32645741 DOI: 10.1055/a-1196-1906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.
Collapse
Affiliation(s)
- Xiu-Qi Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People's Republic of China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuo Xu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People's Republic of China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People's Republic of China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Sarven M, Hao Q, Deng J, Yang F, Wang G, Xiao Y, Xiao X. Biological Control of Tomato Gray Mold Caused by Botrytis Cinerea with the Entomopathogenic Fungus Metarhizium Anisopliae. Pathogens 2020; 9:pathogens9030213. [PMID: 32183055 PMCID: PMC7157576 DOI: 10.3390/pathogens9030213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone in front of the B. cinerea colony in the dual culture test. In addition, volatile organic compounds generated by M. anisopliae were shown to have an inhibitory effect on B. cinerea mycelia growth and reduced 41% of gray mold severity of postharvest tomatoes. The 10% concentration of the culture filtrate of M. anisopliae inhibited 88.62% of colony radial growth as well as 63.85% of sclerotia germination and all conidia germination of B. cinerea. Furthermore, the culture filtrate of M. anisopliae retained its inhibitory effect against the radial growth of B. cinerea even after heating for 15 min at 100 °C. Feasible mechanisms of M. anisopliae involved in the control of B. cinerea were explored, and it was demonstrated that the plasma membrane of B. cinerea conidia was damaged by the product of metabolism of M. anisopliae. In addition, after treating with culture filtrate of M. anisopliae, the B. cinerea phenotype was shown to be abnormal, and cell organelles of B. cinerea mycelia were damaged significantly. A significant control efficacy of M. anisopliae against tomato gray mold was detected on both the detached leaf assay (84.24%) as well as the whole plant (72.38%). In addition, a 78% reduction in tomato fruit mold was detected at a 10% treated concentration of M. anisopliae. These findings suggest that M. anisopliae possesses potential as a biocontrol agent against tomato gray mold in the greenhouse and during the postharvest stage.
Collapse
Affiliation(s)
- Most.Sinthia Sarven
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Qiuyan Hao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Junbo Deng
- Jingmen (China Valley) Academy of Agricultural Science, Jingmen 448000, Hubei, China; (J.D.); (F.Y.)
| | - Fang Yang
- Jingmen (China Valley) Academy of Agricultural Science, Jingmen 448000, Hubei, China; (J.D.); (F.Y.)
| | - Gaofeng Wang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Yannong Xiao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Xueqiong Xiao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
- Correspondence:
| |
Collapse
|
12
|
Chen K, Tian Z, Luo Y, Cheng Y, Long CA. Antagonistic Activity and the Mechanism of Bacillus amyloliquefaciens DH-4 Against Citrus Green Mold. PHYTOPATHOLOGY 2018; 108:1253-1262. [PMID: 29799309 DOI: 10.1094/phyto-01-17-0032-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Citrus fruit usually suffer significant losses during the storage and transportation stages. Green mold, a postharvest rot of citrus fruit caused by Penicillium digitatum, is one of the most serious fungal diseases. In this study, the antagonist strain DH-4 was identified as Bacillus amyloliquefaciens according to morphological observation and 16S ribosomal DNA analysis. In addition, it showed broad antifungal activity, especially the suppression of Penicillium spp. The culture filtrate of strain DH-4 exhibited apparent activity against P. digitatum in vitro and in vivo. In storage, the culture filtrate with DH-4 in it showed a better antiseptic effect. The antifungal substances in the culture filtrate, produced by strain DH-4, displayed stable activity in various extreme conditions. In addition, the antifungal substances in the culture filtrate were identified as macrolactin, bacillaene, iturins, fengycin, and surfactin by ultraperformance liquid chromatography (UPLC) electrospray ionization mass spectrometry analysis. The UPLC fractions containing these antifungal compounds were basically heat tolerant and all responsible for the antagonistic activity against P. digitatum. Transmission electron microscope observation indicated that the antifungal substances might cause abnormalities in the P. digitatum cellular ultrastructure, which could be the possible mode of action of B. amyloliquefaciens against P. digitatum. In addition, it was confirmed via scanning electron microscope analysis that the main way it inhibited P. digitatum was by secreting antimicrobial compounds without direct interaction. This study contributes to the understanding of the mechanism of B. amyloliquefaciens against citrus green mold as well as providing a potential application for the biocontrol of postharvest rot diseases in citrus fruit.
Collapse
Affiliation(s)
- Kai Chen
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Zhonghuan Tian
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Yuan Luo
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Yunjiang Cheng
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Chao-An Long
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| |
Collapse
|