1
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
2
|
Alidoust FA, Rasti B, Zamani H, Mirpour M, Mirzaie A. Rutin-coated zinc oxide nanoparticles: a promising antivirulence formulation against pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:184. [PMID: 38683406 DOI: 10.1007/s11274-024-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.
Collapse
Affiliation(s)
- Fatemeh Azizi Alidoust
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran.
| | | | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
3
|
Olchowik-Grabarek E, Czerkas K, Matchanov AD, Esanov RS, Matchanov UD, Zamaraeva M, Sekowski S. Antibacterial and Antihemolytic Activity of New Biomaterial Based on Glycyrrhizic Acid and Quercetin (GAQ) against Staphylococcus aureus. J Funct Biomater 2023; 14:368. [PMID: 37504863 PMCID: PMC10381813 DOI: 10.3390/jfb14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The goal of this study is to obtain and characterize the complex of quercetin with glycyrrhizic acid, which is known to serve as a drug delivery system. Quercetin is a flavonoid with a wide range of biological activities, including an antimicrobial effect. However, quercetin instability and low bioavailability that limits its use in medical practice makes it necessary to look for new nanoformulations of it. The formation of the GAQ complex (2:1) was confirmed by using UV and FT-IR spectroscopies. It was found that the GAQ exhibited antimicrobial and antihemolytical activities against S. aureus bacteria and its main virulent factor-α-hemolysin. The IC50 value for the antihemolytical effect of GAQ was 1.923 ± 0.255 µg/mL. Using a fluorescence method, we also showed that the GAQ bound tightly to the toxin that appears to underlie its antihemolytic activity. In addition, another mechanism of the antihemolytic activity of the GAQ against α-hemolysin was shown, namely, its ability to increase the rigidity of the outer layer of the erythrocyte membrane and thus inhibit the incorporation of α-hemolysin into the target cells, increasing their resistance to the toxin. Both of these effects of GAQ were observed at concentrations below the MIC value for S. aureus growth, indicating the potential of the complex as an antivirulence agent.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | | | - Rahmat Sulton Esanov
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
- National University of Uzbekistan, Tashkent 700174, Uzbekistan
| | | | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| |
Collapse
|
4
|
Lu J, Li W, Gao T, Wang S, Fu C, Wang S. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114962. [PMID: 34968659 DOI: 10.1016/j.jep.2021.114962] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperi Rhizoma (CR) derives from the rhizome or tuber of Cyperus rotundus L. of Cyperaceae. It is an herbal medicine which has been widely used in different healthcare systems like in China, India, Iran, and Japan. In Chinese medicine, CR could promote the flow of Qi in the Liver and Sanjiao channels, regulate menstruation and alleviate pain. Clinically, CR is used for depression, flatulence, hypochondriac pain, and dysmenorrhea. Thus, it has a long history and significant curative effect for the treatment of various Qi stagnation symptoms. AIM OF THIS REVIEW This review focuses on explaining the major antidepressant mechanisms of CR, and assessing the shortcomings of existing work. Besides, clinical applications, pharmacological effects and their corresponding chemical compositions and quality control of CR have been researched. MATERIALS AND METHODS The search terms "Cyperus rotundus L." was used to obtain the literatures from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The information provided in this review to illustrate material basis of CR were only limited to papers which reported on the chemical compositions and pharmacological effects simultaneously. RESULT The study showed that CR has significant application in Qi stagnation, like depressed liver, stomach, and bowel disorders, etc. in different countries or districts. Aqueous extract, EtOH extract, essential oil, total oligomeric flavonoids and five other extracts were effective constituents displaying pharmacological activities such as antibacterial, antioxidant, neuroprotective, antihemolytic, and anti-inflammatory effect. 41 kinds of specific components like α-cyperone, nootkatone exhibited corresponding pharmacological activities mentioned above. Different concentrations of ethanol extract, essential oil, decoction of CR and monomer composition like α-cyperone, rotunduside G had anti-depressant effects. CONCLUSIONS In the present study, we have provided scientific information and research developments on traditional uses, phytochemical compositions and corresponding pharmacological activities, and quality control status on CR. The antidepression effect and its corresponding chemical compositions were generalized separately. The pharmacological activities studies should be more focused on the reflection of traditional clinical values. CR could be a significant potential herbal medicine to develop antidepressant drugs with lower side effects.
Collapse
Affiliation(s)
- Junrong Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Institute of Qinghai-Tibetan plateau, Southwest Minzu University, Chengdu, 610225, Sichuan, China.
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Qi Z, Xue X, Zhou H, Yuan H, Li W, Yang G, Xie P, Wang C. The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chem 2021; 376:131924. [PMID: 34968917 DOI: 10.1016/j.foodchem.2021.131924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
To valorise olive mill wastewater phenols (OPs) potentially applied in food preservation, a novel stable and regularly spherical OPs-AgNPs (Davg = 78 nm) were successfully assembled in aqueous solution under the optimized conditions (pH 8.0, 5 mM AgNO3, 35C and 30 min). The results of antimicrobial zone diameters indicated that 50 μg/mL of promising OPs-AgNPs presented excellent antimicrobial effects. Especially, the cell wall damages of E. coli ATCC 23,815 were caused when OPs-AgNPs concentration was exceeded its MIC (8.58 μg/mL). Also, a significant down-regulating of the Ca2+-ATPase activity in E. coli was revealed, and the intracellular Ca2+ concentrations were thus decreased from 12.5 to 1.35 µg/mL after a treatment for 3 h. The apoptosis level of E. coli was significantly increased more than the control (55.13% of OPs-AgNPs vs 9.90% of control). In sum, OPs exerts enhanced antimicrobial function via penetrating cell membrane and targeting Ca2+-ATPase after chelated with AgNPs.
Collapse
Affiliation(s)
- Zhiwen Qi
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingying Xue
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hao Zhou
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hua Yuan
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Wenjun Li
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, Hunan, People's Republic of China.
| | - Pujun Xie
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China.
| | - Chengzhang Wang
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
7
|
Adeeyo AO, Edokpayi JN, Alabi MA, Msagati TAM, Odiyo JO. Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
This review aims at establishing the emerging applications of phytobiotics in water treatment and disinfection.
Results
Statistical analysis of data obtained revealed that the use of plant product in water treatment needs more research attention. A major observation is that plants possess multifaceted components and can be sustainably developed into products for water treatment. The seed (24.53%), flower (20.75), leaf (16.98%) and fruit (11.32%) biomasses are preferred against bulb (3.77%), resin (1.89%), bark (1.89%) and tuber (1.89%). The observation suggests that novel applications of plant in water treatment need further exploration since vast and broader antimicrobial activities (63.63%) is reported than water treatment application (36.37%).
Conclusions
This review has revealed the existing knowledge gaps in exploration of plant resources for water treatment and product development. Chemical complexity of some plant extracts, lack of standardisation, slow working rate, poor water solubility, extraction and purification complexities are limitations that need to be overcome for industrial adoption of phytochemicals in water treatment. The field of phytobiotics should engage modern methodologies such as proteomics, genomics, and metabolomics to minimise challenges confronting phytobiotic standardisation. The knowledge disseminated awaits novel application for plant product development in water treatment.
Collapse
|
8
|
Pan L, Yuan Z, Farouk MH, Qin G, Bao N. Isolation and analysation of soybean agglutinin-specific binding proteins for erythrocyte membrane in different animal species. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1869600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhijie Yuan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
10
|
Bhattacharya D, Sinha R, Mukherjee P, Howlader DR, Nag D, Sarkar S, Koley H, Withey JH, Gachhui R. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb Pathog 2019; 140:103927. [PMID: 31846743 DOI: 10.1016/j.micpath.2019.103927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
The use of traditional foods and beverages or their bioactive compounds as anti-virulence agents is a new alternative method to overcome the increased global emergence of antimicrobial resistance in enteric pathogens. In the present study, we investigated the anti-virulence activity of a polyphenolic fraction previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against Vibrio cholerae O1. The isolated fraction was mainly composed of the polyphenols catechin and isorhamnetin. The fraction, the individual polyphenols and the combination of the individual polyphenols significantly inhibited bacterial swarming motility and expression of flagellar regulatory genes motY and flaC, even at sub-inhibitory concentrations. The polyphenolic compounds also decreased bacterial protease secretion and mucin penetration in vitro. In vivo study revealed that the polyphenolic fraction significantly inhibited V. cholerae induced fluid accumulation in the rabbit ileal loop model and intestinal colonization in suckling mice model. Therefore, the anti-virulence activity of the Kombucha polyphenolic fraction involved inhibition of motility and protease secretion of V. cholerae, thus preventing bacterial penetration through the mucin layer as well as fluid accumulation and bacterial colonization in the intestinal epithelial cells. The overall results implied that Kombucha might be considered as a potential alternative source of anti-virulence polyphenols against V. cholerae. To the best of our knowledge, this is the first report on the anti-virulence activity of Kombucha, mostly attributed to its polyphenolic content.
Collapse
Affiliation(s)
- Debanjana Bhattacharya
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Debaki Ranjan Howlader
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Soumyadev Sarkar
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Ratan Gachhui
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
11
|
Evaluation of Antioxidant Capacity, Protective Effect on Human Erythrocytes and Phenolic Compound Identification in Two Varieties of Plum Fruit (Spondias spp.) by UPLC-MS. Molecules 2018; 23:molecules23123200. [PMID: 30518166 PMCID: PMC6321542 DOI: 10.3390/molecules23123200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Plum edible part was used to obtained extracts by during a 4 h maceration process using three different solvents (ethanol, methanol and water) for the determination of total phenols and flavonoids, antioxidant capacity by (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hemolysis inhibition in human blood assays. Subsequently, phenolic compounds were identified using ultra-performance liquid chromatography (UPLC-MS). The results indicated that the ethanolic extract of plum fruit being a good source of phenolic (12–18 mg GAE/g FW) and flavonoids (2.3–2.5 mg QE/g FW) content in both varieties of plum. Also, the fruits proved a good source of antioxidants as measured by DPPH and ABTS; likewise, plum aqueous extracts showed the highest protective effect on human erythrocytes with 74.34 and 64.62% for yellow and red plum, respectively. A total of 23 bioactive compounds were identified by UPLC-MS, including gallic acid, rutin, resorcinol, chlorogenic acid, catechin, and ellagic acid, and the antioxidant capacity can be attributed to these species. The edible part of plum contains compounds of biological interest, suggesting that this fruit has antioxidant potential that can be exploited for various technologies.
Collapse
|
12
|
Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 2017; 117:377-389. [DOI: 10.1007/s00436-017-5711-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
|
13
|
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 2017; 8:266-275. [PMID: 28869082 PMCID: PMC5747506 DOI: 10.1016/j.jaim.2017.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
The discovery of antibiotics in the previous century lead to reduction in mortality and morbidity due to infectious diseases but their inappropriate and irrational use has resulted in emergence of resistant microbial populations. Alteration of target sites, active efflux of drugs and enzymatic degradations are the strategies employed by the pathogenic bacteria to develop intrinsic resistance to antibiotics. This has led to an increased interest in medicinal plants since 25-50% of current pharmaceuticals are plant derived. Crude extracts of medicinal plants could serve as an alternate source of resistance modifying agents owing to the wide variety of secondary metabolites. These metabolites (alkaloids, tannins, polyphenols etc.) could act as potentials for antimicrobials and resistance modifiers. Plant extracts have the ability to bind to protein domains leading to modification or inhibition protein-protein interactions. This enables the herbals to also present themselves as effective modulators of host related cellular processes viz immune response, mitosis, apoptosis and signal transduction. Thus they may exert their activity not only by killing the microorganism but by affecting key events in the pathogenic process, thereby, the bacteria, fungi and viruses may have a reduced ability to develop resistance to botanicals. The article is meant to stimulate research wherein the cidal activity of the extract is not the only parameter considered but other mechanism of action by which plants can combat drug resistant microbes are investigated. The present article emphasizes on mechanisms involved in countering multi drug resistance.
Collapse
Affiliation(s)
- Pooja D Gupta
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India
| | - Tannaz J Birdi
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India.
| |
Collapse
|
14
|
Bhutkar MA, Bhinge SD, Randive DS, Wadkar GH. Hypoglycemic effects of Berberis aristata and Tamarindus indica extracts in vitro. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|