1
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
3
|
Xia X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics (Basel) 2023; 12:1367. [PMID: 37760664 PMCID: PMC10526031 DOI: 10.3390/antibiotics12091367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires drug resistance at a rate comparable to that of bacterial pathogens that replicate much faster and have a higher mutation rate. One explanation for this rapid acquisition of drug resistance in Mtb is that drug resistance may evolve in other fast-replicating mycobacteria and then be transferred to Mtb through horizontal gene transfer (HGT). This paper aims to address three questions. First, does HGT occur between Mtb and other mycobacterial species? Second, what genes after HGT tend to survive in the recipient genome? Third, does HGT contribute to antibiotic resistance in Mtb? I present a conceptual framework for detecting HGT and analyze 39 ribosomal protein genes, 23S and 16S ribosomal RNA genes, as well as several genes targeted by antibiotics against Mtb, from 43 genomes representing all major groups within Mycobacterium. I also included mgtC and the insertion sequence IS6110 that were previously reported to be involved in HGT. The insertion sequence IS6110 shows clearly that the Mtb complex participates in HGT. However, the horizontal transferability of genes depends on gene function, as was previously hypothesized. HGT is not observed in functionally important genes such as ribosomal protein genes, rRNA genes, and other genes chosen as drug targets. This pattern can be explained by differential selection against functionally important and unimportant genes after HGT. Functionally unimportant genes such as IS6110 are not strongly selected against, so HGT events involving such genes are visible. For functionally important genes, a horizontally transferred diverged homologue from a different species may not work as well as the native counterpart, so the HGT event involving such genes is strongly selected against and eliminated, rendering them invisible to us. In short, while HGT involving the Mtb complex occurs, antibiotic resistance in the Mtb complex arose from mutations in those drug-targeted genes within the Mtb complex and was not gained through HGT.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada; ; Tel.: +1-613-562-5718
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Xie W, Wang L, Luo D, Soni V, Rosenn EH, Wang Z. Mycobacterium smegmatis, a Promising Vaccine Vector for Preventing TB and Other Diseases: Vaccinomics Insights and Applications. Vaccines (Basel) 2023; 11:1302. [PMID: 37631870 PMCID: PMC10459588 DOI: 10.3390/vaccines11081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium smegmatis (M.sm) is frequently used as an alternative model organism in Mycobacterium tuberculosis (M.tb) studies. While containing high sequence homology with M.tb, it is considered non-pathogenic in humans. As such it has been used to study M.tb and other infections in vivo and more recently been explored for potential therapeutic applications. A body of previous research has highlighted the potential of using genetically modified M.sm displaying rapid growth and unique immunostimulatory characteristics as an effective vaccine vector. Novel systems biology techniques can further serve to optimize these delivery constructs. In this article, we review recent advancements in vaccinomics tools that support the efficacy of a M.sm-based vaccine vector. Moreover, the integration of systems biology and molecular omics techniques in these pioneering studies heralds a potential accelerated pipeline for the development of next-generation recombinant vaccines against rapidly developing diseases.
Collapse
Affiliation(s)
- Weile Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longlong Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Taj A, Jia L, Sha S, Wang C, Ullah H, Haris M, Ma X, Ma Y. Functional analysis and enzyme characterization of Mannose-1-phosphate guanylyl transferase (ManB) from Mycobacterium tuberculosis. Res Microbiol 2021; 173:103884. [PMID: 34644596 DOI: 10.1016/j.resmic.2021.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis cell wall consist variety of mannose containing glycoconjugates including lipomannan (LM) and lipoarabinomannan (LAM). These lipoglycans are involved in cell wall integrity and play role in virulence of M. tuberculosis by modulating host immune response. GDP-mannose, required for the synthesis of lipoglycans, is catalyzed by enzyme Mannose-1-phosphate guanylyl transferase (ManB). The enzyme with similar function has been studied in variety of species of prokaryotes and eukaryotes. However, biological role of ManB and its enzymatic activity remains uncharacterized in M. tuberculosis. In present study, we elucidated the role of enzyme by constructing manB knockdown strain of M. tuberculosis H37Ra. The manB knockdown decreased the cell growth and also effected the morphology of M. tuberculosis by altering the permeability of cell membrane. These findings provide the understanding on ManB function and suggesting that ManB could be the potential target for novel anti-tuberculosis drug. Furthermore, we also characterized ManB enzyme by establishing 96 well plate colorimetric assay and determined the kinetic properties including initial velocity, optimum temperature, optimum pH and other kinetic parameters. Our established assay will be helpful for further high throughput screening of potential inhibitors against ManB.
Collapse
Affiliation(s)
- Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Muhammad Haris
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China; Department of Microbiology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
6
|
Jia L, Sha S, Yang S, Taj A, Ma Y. Effect of Protein O-Mannosyltransferase (MSMEG_5447) on M. smegmatis and Its Survival in Macrophages. Front Microbiol 2021; 12:657726. [PMID: 34276591 PMCID: PMC8278756 DOI: 10.3389/fmicb.2021.657726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Protein O-mannosyltransferase (PMT) catalyzes an initial step of protein O-mannosylation of Mycobacterium tuberculosis (Mtb) and plays a crucial role for Mtb survival in the host. To better understand the role of PMT in the host innate immune response during mycobacterial infection, in this study, we utilized Mycobacterium smegmatis pmt (MSMEG_5447) gene knockout strain, ΔM5447, to infect THP-1 cells. Our results revealed that the lack of MSMEG_5447 not only impaired the growth of M. smegmatis in 7H9 medium but also reduced the resistance of M. smegmatis against lysozyme and acidic stress in vitro. Macrophage infection assay showed that ΔM5447 displayed attenuated growth in macrophages at 24 h post-infection. The production of TNF-α and IL-6 and the activation of transcription factor NF-κB were decreased in ΔM5447-infected macrophages, which were further confirmed by transcriptomic analysis. Moreover, ΔM5447 failed to inhibit phagosome–lysosome fusion in macrophages. These findings revealed that PMT played a role in modulating the innate immune responses of the host, which broaden our understanding for functions of protein O-mannosylation in mycobacterium–host interaction.
Collapse
Affiliation(s)
- Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Patil S, Palande A, Lodhiya T, Pandit A, Mukherjee R. Redefining genetic essentiality in Mycobacterium tuberculosis. Gene 2020; 765:145091. [PMID: 32898604 DOI: 10.1016/j.gene.2020.145091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/15/2022]
Abstract
Sequencing transposon mutant libraries have been pivotal in annotating essential and non-essential genes in bacteria. This is particularly very helpful in the case of Mycobacterium tuberculosis with a large part of its genome without known function. It is not known whether there are any variations in the essentiality states as a function of optimal growth in the absence of any selection pressure. We here grow a high-density mutant library of M. tuberculosis through serial cultures and monitor the temporal fluctuations in insertion frequencies across all TA dinucleotides in the genome. Genes that cause morphological and physiological heterogeneity or enable metabolic bypass were found to gradually lose insertions, while genes comprising the toxin-antitoxin systems were found to get enriched with insertions during growth in nutrient replete conditions. High levels of fluctuations were observed in genes involved in cell wall and cell processes, intermediary metabolism, and genes involved in virulence, suggesting new modes of adaptation undertaken by the mutants. We also report the essentiality status of several newly annotated genetic features.
Collapse
Affiliation(s)
- Saniya Patil
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Aseem Palande
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Tejan Lodhiya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Awadhesh Pandit
- National Center for Biological Sciences, Bengaluru 560065, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
8
|
Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Rep 2020; 27:2468-2479.e3. [PMID: 31116989 PMCID: PMC6538288 DOI: 10.1016/j.celrep.2018.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/14/2018] [Accepted: 12/13/2018] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, withstands diverse environmental stresses in the host. The periplasmic protease HtrA is required only to survive extreme conditions in most bacteria but is predicted to be essential for normal growth in mycobacteria. We confirm that HtrA is indeed essential in Mycobacterium smegmatis and interacts with another essential protein of unknown function, LppZ. However, the loss of any of three unlinked genes, including those encoding Ami3, a peptidoglycan muramidase, and Pmt, a mannosyltransferase, suppresses the essentiality of both HtrA and LppZ, indicating the functional relevance of these genes' protein products. Our data indicate that HtrA-LppZ is required to counteract the accumulation of active Ami3, which is toxic under the stabilizing influence of Pmt-based mannosylation. This suggests that HtrA-LppZ blocks the toxicity of a cell wall enzyme to maintain mycobacterial homeostasis.
Collapse
|
9
|
Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics. Molecules 2020; 25:molecules25102348. [PMID: 32443484 PMCID: PMC7287972 DOI: 10.3390/molecules25102348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
To date, Mycobacterium tuberculosis (Mtb) remains the world’s greatest infectious killer. The rise of multidrug-resistant strains stresses the need to identify new therapeutic targets to fight the epidemic. We previously demonstrated that bacterial protein-O-mannosylation is crucial for Mtb infectiousness, renewing the interest of the bacterial-secreted mannoproteins as potential drug-targetable virulence factors. The difficulty of inventorying the mannoprotein repertoire expressed by Mtb led us to design a stringent multi-step workflow for the reliable identification of glycosylated peptides by large-scale mass spectrometry-based proteomics. Applied to the differential analyses of glycoproteins secreted by the wild-type Mtb strain—and by its derived mutant invalidated for the protein-O-mannosylating enzyme PMTub—this approach led to the identification of not only most already known mannoproteins, but also of yet-unknown mannosylated proteins. In addition, analysis of the glycoproteome expressed by the isogenic recombinant Mtb strain overexpressing the PMTub gene revealed an unexpected mannosylation of proteins, with predicted or demonstrated functions in Mtb growth and interaction with the host cell. Since in parallel, a transient increased expression of the PMTub gene has been observed in the wild-type bacilli when infecting macrophages, our results strongly suggest that the Mtb mannoproteome may undergo adaptive regulation during infection of the host cells. Overall, our results provide deeper insights into the complexity of the repertoire of mannosylated proteins expressed by Mtb, and open the way to novel opportunities to search for still-unexploited potential therapeutic targets.
Collapse
|
10
|
Deng G, Zhang W, Ji N, Zhai Y, Shi X, Liu X, Yang S. Identification of Secreted O-Mannosylated Proteins From BCG and Characterization of Immunodominant Antigens BCG_0470 and BCG_0980. Front Microbiol 2020; 11:407. [PMID: 32231652 PMCID: PMC7082424 DOI: 10.3389/fmicb.2020.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Bacterial glycoproteins have been investigated as vaccine candidates as well as diagnostic biomarkers. However, they are poorly understood in Mycobacterium bovis strain bacille Calmette-Guérin (BCG), a non-pathogenic model of Mycobacterium tuberculosis. To understand the roles of secreted O-mannosylated glycoproteins in BCG, we conducted a ConA lectin-affinity chromatography and mass spectra analysis to identify O-mannosylated proteins in BCG culture filtrate. Subsequent screening of antigens was performed using polyclonal antibodies obtained from a BCG-immunized mouse, with 15 endogenous O-mannosylated proteins eventually identified. Of these, BCG_0470 and BCG_0980 (PstS3) were revealed as the immunodominant antigens. To examine the protective effects of the antigens, recombinant antigens proteins were first expressed in Mycobacterium smegmatis and Escherichia coli, with the purified proteins then used to boost BCG primed-mice. Overall, the treated mice showed a greater delayed-type hypersensitivity response in vivo, as well as stronger Th1 responses, including higher level of IFN-γ, TNF-α, and specific-IgG. Therefore, mannosylated proteins BCG_0470 and BCG_0980 effectively amplified the immune responses induced by BCG in mice. Together, our results suggest that the oligosaccharide chains containing mannose are the antigenic determinants of glycoproteins, providing key insight for future vaccine optimization and design.
Collapse
Affiliation(s)
- Guoying Deng
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Ji
- Department of Clinical Laboratory, Dalian Third People's Hospital, Dalian, China
| | - Yunpeng Zhai
- Department of Clinical Laboratory, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Sharma D, Poonam, Shrivastava R, Bisht GS. In Vitro Efficacy of Lipid Conjugated Peptidomimetics Against Mycobacterium smegmatis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09859-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Li X, Mei H, Chen F, Tang Q, Yu Z, Cao X, Andongma BT, Chou SH, He J. Transcriptome Landscape of Mycobacterium smegmatis. Front Microbiol 2017; 8:2505. [PMID: 29326668 PMCID: PMC5741613 DOI: 10.3389/fmicb.2017.02505] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
The non-pathogenic bacterium Mycobacterium smegmatis mc2155 has been widely used as a model organism in mycobacterial research, yet a detailed study about its transcription landscape remains to be established. Here we report the transcriptome, expression profiles and transcriptional structures through growth-phase-dependent RNA sequencing (RNA-seq) as well as other related experiments. We found: (1) 2,139 transcriptional start sites (TSSs) in the genome-wide scale, of which eight samples were randomly selected and further verified by 5′-RACE; (2) 2,233 independent monocistronic or polycistronic mRNAs in the transcriptome within the operon/sub-operon structures which are classified into five groups; (3) 47.50% (1016/2139) genes were transcribed into leaderless mRNAs, with the TSSs of 41.3% (883/2139) mRNAs overlapping with the first base of the annotated start codon. Initial amino acids of MSMEG_4921 and MSMEG_6422 proteins were identified by Edman degradation, indicating the presence of distinctive widespread leaderless features in M. smegmatis mc2155. (4) 150 genes with potentially wrong structural annotation, of which 124 proposed genes have been corrected; (5) eight highly active promoters, with their activities further determined by β-galactosidase assays. These data integrated the transcriptional landscape to genome information of model organism mc2155 and lay a solid foundation for further works in Mycobacterium.
Collapse
Affiliation(s)
- Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|