1
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
2
|
Ortiz-Magdaleno M, Sánchez-Vargas L, Gardea-Contreras D, Campos-Ibarra V, Pozos-Guillén A, Márquez-Preciado R. Antibiofilm properties of silver nanoparticles incorporated into polymethyl methacrylate used for dental applications. Biomed Mater Eng 2023:BME222513. [PMID: 36744329 DOI: 10.3233/bme-222513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Acrylic resins used in dental and biomedical applications do not have antimicrobial properties, their surface is susceptible to colonization of microorganisms. OBJECTIVE The aim of this study was to evaluate the antibiofilm properties of silver nanoparticles (AgNPs) deposited in a polymethyl methacrylate (PMMA) surface against a Staphylococcus aureus biofilm. METHODS The PMMA was impregnated with AgNPs by using the in-situ polymerization method. To determine the solubility of the incorporated silver (Ag+) atomic absorption spectrophotometry was used (AAS) at 24 h, 48 h, 7 days, and 30 days. Thirty specimens of PMMA with AgNPs and without NP (control group) were assembled in the CDC Biofilm Bioreactor system with a cell suspension of S. aureus. The specimens were removed at 6, 12, 24, 48, and 72 h to determine the viability profile and quantify the Arbitrary Fluorescence Units (AFU). RESULTS The AgNPs showed an irregular and quasispherical shape with an average size of 25 nm. AAS analysis demonstrated a low solubility of Ag+. The formation of the S. aureus biofilm increased as the evaluation periods continued up to 72 h. The experimental group showed poor growth, and a decrease in the intensity of the fluorescence demonstrated a statistically significant inhibition of the formation of the biofilm (P < 0.05) in relation to the control group at 6, 12, 24, 48, and 72 h. CONCLUSION AgNPs incorporated into PMMA decreased the growth and maturation of S. aureus biofilm.
Collapse
Affiliation(s)
- Marine Ortiz-Magdaleno
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University, San Luis Potosi, Mexico
| | - Luis Sánchez-Vargas
- Biochemical and Microbiology Laboratory, Faculty of Stomatology, San Luis Potosí University, San Luis Potosi, Mexico
| | - Delia Gardea-Contreras
- Paediatric Dentistry Postgraduate Program, Faculty of Stomatology, San Luis Potosí University, San Luis Potosi, Mexico
| | | | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University, San Luis Potosi, Mexico
| | - Raúl Márquez-Preciado
- Paediatric Dentistry Postgraduate Program, Faculty of Stomatology, San Luis Potosí University, San Luis Potosi, Mexico
| |
Collapse
|
3
|
Mischo J, Faidt T, McMillan RB, Dudek J, Gunaratnam G, Bayenat P, Holtsch A, Spengler C, Müller F, Hähl H, Bischoff M, Hannig M, Jacobs K. Hydroxyapatite Pellets as Versatile Model Surfaces for Systematic Adhesion Studies on Enamel: A Force Spectroscopy Case Study. ACS Biomater Sci Eng 2022; 8:1476-1485. [PMID: 35263544 PMCID: PMC9007113 DOI: 10.1021/acsbiomaterials.1c00925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.
Collapse
Affiliation(s)
- Johannes Mischo
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Thomas Faidt
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Ryan B. McMillan
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Johanna Dudek
- Clinic
of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg/Saar, Germany
| | - Gubesh Gunaratnam
- Institute
of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Pardis Bayenat
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Anne Holtsch
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Christian Spengler
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Markus Bischoff
- Institute
of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic
of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg/Saar, Germany
| | - Karin Jacobs
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
AlSamak S, Hamdoon S, Ahmed M, Gasgoos S. Evaluation of biofilm formation on different clear orthodontic retainer materials. J Orthod Sci 2022; 11:34. [PMID: 36188210 PMCID: PMC9515562 DOI: 10.4103/jos.jos_7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
Aim: To assess the chemical composition and oral biofilm formation on different types of commercially available clear orthodontic retainer materials (CORM). Materials and Methods: Four types of CORM commercially available were used (Clear advantage series I (CAS1), Clear advantage series II (CAS2), Endure (ES), and CENTRI FORM-clear rigid material (CFCRM)). Circular samples (12 mm diameter) of each CORM were prepared for (n = 40). Unstimulated saliva from twenty volunteers was collected. Fourier Transformation Infrared Spectroscopy (FTIR) was used for the evaluation of the chemical composition of CORM. For the quantitative assessment of oral biofilm formation, samples of each CORM were incubated for twenty-four hours, and crystal violet assay (CVA) was utilized. The degree of absorbance was measured using a spectrophotometer at 570 nm. For qualitative evaluation of oral formation, the samples of each CORM were incubated for 24 hours, and viable biofilm cells stained by acridine orange were examined under a fluorescent microscope. Results: FTIR findings showed that CAS2 was made of polypropylene and ES is made of polyvinyl chloride, while others were made of co-polyester. CVA results confirmed that CAS2 showed the lowest biofilm formation, which differs significantly compared to CAS1, CFCRM, and ES. No significant difference in biofilm formation was detected between CAS1, CFCRM, and ES. Viable biofilm cells staining by acridine orange showed that CAS2 demonstrated smaller microcolonies of viable biofilm cells compared with CAS1, CFCRM, and ES, which confirmed the result obtained by CVA. Conclusions: CAS2 showed anti-microbial activities with a decrease the in vitro biofilm formation, which may be related to its chemical composition.
Collapse
|
5
|
Turri A, Čirgić E, Shah FA, Hoffman M, Omar O, Dahlin C, Trobos M. Early plaque formation on PTFE membranes with expanded or dense surface structures applied in the oral cavity of human volunteers. Clin Exp Dent Res 2020; 7:137-146. [PMID: 33169543 PMCID: PMC8019762 DOI: 10.1002/cre2.344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives This clinical randomized study aimed to evaluate the early plaque formation on nonresorbable polytetrafluoroethylene (PTFE) membranes having either a dense (d‐PTFE) or an expanded (e‐PTFE) microstructure and exposed to the oral cavity. Material and Methods Twelve individuals were enrolled in this study. In a split‐mouth design, five test membranes (e‐PTFE) with a dual‐layer configuration and five control membranes (d‐PTFE) were bonded on the buccal surfaces of posterior teeth of each subject. All study subjects refrained from toothbrushing during the study period. Specimens were detached from the teeth at 4 and 24 hr and subjected to viability counting, confocal microscopy, and scanning electron microscopy. Plaque samples were harvested from neighboring teeth at baseline, 4, and 24 hr, as control. Wilcoxon signed rank test was applied. Results No bond failure of the membranes was reported. Between the early and late time points, viable bacterial counts increased on all membranes, with no difference between the test and control. The number of Staphylococcus spp. decreased on the tooth surfaces and increased on both membranes overtime, with a significant difference compared to teeth. The total biomass and average biofilm thickness of live and dead cells were significantly greater at the d‐PTFE barriers after 4 hr. Conclusion This study demonstrated that the e‐PTFE membrane was associated with a lesser degree of biofilm accumulation during the initial exposure compared to the d‐PTFE membrane. The present experimental setup provides a valuable toolbox to study the in vivo behavior of different membranes used in guided bone regeneration (GBR).
Collapse
Affiliation(s)
- Alberto Turri
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,The Brånemark Clinic, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden
| | - Emina Čirgić
- Department of Orthodontics, University Clinics of Odontology, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden.,Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hoffman
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Vice Deanship for Postgraduate Studies and Scientific Research, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral, Maxillofacial Surgery and Research and Development, NU-Hospital Organisation, Trollhättan, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Abstract
Microbial adhesion and biofilm formation are usually studied using molecular and cellular biology assays, optical and electron microscopy, or laminar flow chamber experiments. Today, atomic force microscopy (AFM) represents a valuable addition to these approaches, enabling the measurement of forces involved in microbial adhesion at the single-molecule level. In this minireview, we discuss recent discoveries made applying state-of-the-art AFM techniques to microbial specimens in order to understand the strength and dynamics of adhesive interactions. These studies shed new light on the molecular mechanisms of adhesion and demonstrate an intimate relationship between force and function in microbial adhesins.
Collapse
|
7
|
Pan C, Zhou Z, Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res 2018; 13:220. [PMID: 30176886 PMCID: PMC6122451 DOI: 10.1186/s13018-018-0930-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Implant-related infections (IRIs) which led to a large amount of medical expenditure were caused by bacteria and fungi that involve the implants in the operation or in ward. Traditional treatments of IRIs were comprised of repeated radical debridement, replacement of internal fixators, and intravenous antibiotics. It needed a long time and numbers of surgeries to cure, which meant a catastrophe to patients. So how to prevent it was more important than to cure it. As an excellent local release system, coating is a good idea by its local drug infusion and barrier effect on resisting biofilms which were the main cause of IRIs. So in this review, materials used for coatings and evidences of prevention were elaborated.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai, 201306 China
| |
Collapse
|
8
|
Bendaif H, Melhaoui A, Ramdani M, Elmsellem H, Douez C, El Ouadi Y. Antibacterial activity and virtual screening by molecular docking of lycorine from Pancratium foetidum Pom (Moroccan endemic Amaryllidaceae). Microb Pathog 2017; 115:138-145. [PMID: 29253598 DOI: 10.1016/j.micpath.2017.12.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/18/2022]
Abstract
Lycorine is an alkaloid isolated from bulbs of Pancratium foetidum Pom Amaryllidaceae of the genus Lycoris. It has very strong pharmacodynamics properties and biological effects, among others, antimalarial, antiviral, antitumor, and anti-inflammatory. Lycorine has been identified and characterized by thin layer chromatography, IR and NMR (1H and 13C NMR, COZY, HMBC, HSQC and NOESY). The antibacterial activity of lycorine has been evaluated. Lycorine has a moderate antibacterial activity on the majority of strains studied, nevertheless it is more effective than Streptomycin and Ampicillin against bacteria: P. aeruginosa, En. cloacae. To confirm these results, it is necessary to use qualitative techniques and methods, etc… We performed a virtual docking ligand-lycorine protein screening study to predict and characterize their mode of interaction with the LpxC receptor. Docking results have shown that lycorine can interact with target amino residues studied by hydrogen and metal-ion bonds. In addition, the ADME-Tox profile study has shown that lycorine is all in agreement, either with Lipinski's critics or with the toxicity standards.
Collapse
Affiliation(s)
- H Bendaif
- Laboratory of Macromolecular Organic Chemistry and Natural Products (URAC25), Faculty of Science, 60000 Oujda, Morocco.
| | - A Melhaoui
- Laboratory of Macromolecular Organic Chemistry and Natural Products (URAC25), Faculty of Science, 60000 Oujda, Morocco
| | - M Ramdani
- Laboratory of Applied Analytical Chemistry Materials and Environment (LA2CME-URAC18), Faculty of Science, B.P. 717, 60000 Oujda, Morocco
| | - H Elmsellem
- Laboratory of Applied Analytical Chemistry Materials and Environment (LA2CME-URAC18), Faculty of Science, B.P. 717, 60000 Oujda, Morocco
| | - C Douez
- Université d'Artois, 62000, Arras, France
| | - Y El Ouadi
- Laboratory of Applied Analytical Chemistry Materials and Environment (LA2CME-URAC18), Faculty of Science, B.P. 717, 60000 Oujda, Morocco.
| |
Collapse
|
9
|
Miladi H, Zmantar T, Kouidhi B, Al Qurashi YMA, Bakhrouf A, Chaabouni Y, Mahdouani K, Chaieb K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb Pathog 2017; 112:156-163. [DOI: 10.1016/j.micpath.2017.09.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|