1
|
da Silva AT, Rosa DS, Tavares MRS, Souza RDFS, Navarro DMDAF, de Aguiar JCRDOF, da Silva MV, da Costa MM. Essential oils of Eugenia spp. (myrtaceae) show in vitro antibacterial activity against Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2024:10.1007/s42770-024-01489-6. [PMID: 39190260 DOI: 10.1007/s42770-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Bovine mastitis, an inflammation of the mammary glands, is mainly caused by bacteria such as Staphylococcus aureus. While antibiotics are the primary treatment for this disease, their effectiveness is often diminished due to resistant strains and biofilm formation, creating the need for safer and more efficient therapies. Plant-based oil therapies, particularly those derived from the genus Eugenia, are gaining popularity due to their pharmacological potential and historical use. In this study, we evaluated the antibacterial, antibiofilm, and synergistic potential of essential oils (EOs) from four species of the genus Eugenia (E. brejoensis, E. gracillima, E. pohliana, and E. stictopetala) against S. aureus isolates from bovine mastitis. The EO of E. stictopetala was obtained by hydrodistillation, and its composition was analyzed using gas chromatography coupled with mass spectrometry. The experiment employed seven clinical isolates from mastitis and two control strains: ATCC 33591 (methicillin-resistant S. aureus - MRSA) and ATCC 25923 (methicillin-susceptible and biofilm producer). A broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the EOs and oxacillin. The EO of E. stictopetala contained (E)-caryophyllene (18.01%), β-pinene (8.84%), (E)-nerolidol (8.24%), and α-humulene (6.14%) as major compounds. In the MIC assay, all essential oils showed bactericidal and bacteriostatic effects, especially the species E. brejoensis and E. pohliana, which had MICs ranging from 64 to 256 µg/mL. Regarding the antibiofilm effect, all essential oils were capable of interfering with biofilm formation at subinhibitory concentrations of ½ and ¼ of the MIC. However, they did not significantly affect pre-established biofilms. Additionally, a synergistic interaction was detected between the EOs and oxacillin, with a reduction of 75-93.75% in the antimicrobial MIC. Molecular docking studies indicated that the phytochemicals β-(E)-caryophyllene, (E)-nerolidol, Δ-elemene, and α-cadinol present in the EOs formed more stable complexes with penicillin-binding proteins, indicating a possible mechanism of antibacterial action. Therefore, these results show that the essential oils of Eugenia spp. are promising sources for the development of new therapeutic methods, opening new perspectives for a more effective treatment of bovine mastitis.
Collapse
Affiliation(s)
- Alisson Teixeira da Silva
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Danillo Sales Rosa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Marcio Rennan Santos Tavares
- Federal Institute of the Sertão Pernambucano (IF Sertão), Campus Petrolina Rural Area, Petrolina, Pernambuco, CEP 56302-970, Brazil
| | - Renata de Faria Silva Souza
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | | | | | - Márcia Vanusa da Silva
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, CEP 50670-901, Brazil
| | - Mateus Matiuzzi da Costa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil.
| |
Collapse
|
2
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
3
|
Getahun YA, Abey SL, Beyene AM, Belete MA, Tessema TS. Coagulase-negative staphylococci from bovine milk: Antibiogram profiles and virulent gene detection. BMC Microbiol 2024; 24:263. [PMID: 39026151 PMCID: PMC11256419 DOI: 10.1186/s12866-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Coagulase-negative Staphylococcus species are an emerging cause of intramammary infection, posing a significant economic and public health threat. The aim of this study was to assess the occurrence of coagulase-negative Staphylococcus species in bovine milk and dairy farms in Northwestern Ethiopia and to provide information about their antibiotic susceptibility and virulence gene profiles. METHODS The cross-sectional study was conducted from February to August 2022. Coagulase-negative Staphylococcus species were isolated from 290 milk samples. Species isolation and identification were performed by plate culturing and biochemical tests and the antimicrobial susceptibility pattern of each isolate was determined by the Kirby-Bauer disc diffusion test. The single-plex PCR was used to detect the presence of virulent genes. The STATA software version 16 was used for data analysis. The prevalence, proportion of antimicrobial resistance and the number of virulent genes detected from coagulase-negative Staphylococcus species were analyzed using descriptive statistics. RESULTS Coagulase-negative Staphylococcus species were isolated in 28.6%, (95% CI: 23.5-34.2) of the samples. Of these, the S. epidermidis, S. sciuri, S. warneri, S. haemolyticus, S. simulans, S. chromogens, S. cohnii, and S. captis species were isolated at the rates of 11, 5.2, 3.4, 3.1, 3.1, 1, 1, and 0.7% respectively. All the isolates showed a high percentage (100%) of resistance to Amoxicillin, Ampicillin, and Cefotetan and 37.5% of resistance to Oxacillin. The majority (54.2%) of coagulase-negative isolates also showed multidrug resistance. Coagulase-negative Staphylococcus species carried the icaD, pvl, mecA, hlb, sec, and hla virulent genes at the rates of 26.5%, 22.1%, 21.7%, 9.6%, 9.6% and 8.4% respectively. CONCLUSION The present study revealed that the majority of the isolates (54.2%) were found multidrug-resistant and carriage of one or more virulent and enterotoxin genes responsible for intramammary and food poisoning infections. Thus, urgent disease control and prevention measures are warranted to reduce the deleterious impact of coagulase-negative species. To the best of our knowledge, this is the first study in Ethiopia to detect coagulase-negative Staphylococcus species with their associated virulent and food poisoning genes from bovine milk.
Collapse
Affiliation(s)
- Yared Abate Getahun
- Livestock and Fishery Research Center, Arba Minch University, P.O.BOX: 21, Arba Minch, Ethiopia.
| | - Solomon Lulie Abey
- Department of Pathobiology, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Achenef Melaku Beyene
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mequanint Addisu Belete
- Department of Veterinary Laboratory Technology, College of Agriculture and Natural Resource, Debre Markos University, Debre Markos, Ethiopia
| | | |
Collapse
|
4
|
Wintachai P, Jaroensawat N, Harding P, Wiwasuku T, Mitsuwan W, Septama AW. Antibacterial and antibiofilm efficacy of Solanum lasiocarpum root extract synthesized silver/silver chloride nanoparticles against Staphylococcus haemolyticus associated with bovine mastitis. Microb Pathog 2024; 192:106724. [PMID: 38834135 DOI: 10.1016/j.micpath.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 μg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand.
| | - Nannapat Jaroensawat
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Theanchai Wiwasuku
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Center of Excellence in Innovation of Essential Oil and Bio-active Compound, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
5
|
Titouche Y, Akkou M, Djaoui Y, Mechoub D, Fatihi A, Campaña-Burguet A, Bouchez P, Bouhier L, Houali K, Torres C, Nia Y, Hennekinne JA. Nasal carriage of Staphylococcus aureus in healthy dairy cows in Algeria: antibiotic resistance, enterotoxin genes and biofilm formation. BMC Vet Res 2024; 20:247. [PMID: 38849892 PMCID: PMC11157847 DOI: 10.1186/s12917-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus aureus can colonize and infect a variety of animal species. In dairy herds, it is one of the leading causes of mastitis cases. The objective of this study was to characterize the S. aureus isolates recovered from nasal swabs of 249 healthy cows and 21 breeders of 21 dairy farms located in two provinces of Algeria (Tizi Ouzou and Bouira). METHODS The detection of enterotoxin genes was investigated by multiplex PCRs. Resistance of recovered isolates to 8 antimicrobial agents was determined by disc-diffusion method. The slime production and biofilm formation of S. aureus isolates were assessed using congo-red agar (CRA) and microtiter-plate assay. Molecular characterization of selected isolates was carried out by spa-typing and Multi-Locus-Sequence-Typing (MLST). RESULTS S. aureus was detected in 30/249 (12%) and 6/13 (28.6%) of nasal swabs in cows and breeders, respectively, and a total of 72 isolates were recovered from positive samples (59 isolates from cows and 13 from breeders). Twenty-six of these isolates (36.1%) harbored genes encoding for staphylococcal enterotoxins, including 17/59 (28.8%) isolates from cows and 9/13 (69.2%) from breeders. Moreover, 49.1% and 92.3% of isolates from cows and breeders, respectively, showed penicillin resistance. All isolates were considered as methicillin-susceptible (MSSA). Forty-five (76.3%) of the isolates from cows were slime producers and 52 (88.1%) of them had the ability to form biofilm in microtiter plates. Evidence of a possible zoonotic transmission was observed in two farms, since S. aureus isolates recovered in these farms from cows and breeders belonged to the same clonal lineage (CC15-ST15-t084 or CC30-ST34-t2228). CONCLUSIONS Although healthy cows in this study did not harbor methicillin-resistant S. aureus isolates, the nares of healthy cows could be a reservoir of enterotoxigenic and biofilm producing isolates which could have implications in human and animal health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria.
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Saad Dahlab, Blida 1.Blida, Tizi Ouzou, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pascal Bouchez
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Laurence Bouhier
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | | |
Collapse
|
6
|
Tiraboschi G, Isaac P, Breser ML, Angiolini V, Rodriguez-Berdini L, Porporatto C, Bohl LP. 1,25 dihydroxyvitamin D 3-mediated effects on bovine innate immunity and on biofilm-forming Staphylococcus spp. isolated from cattle with mastitis. J Steroid Biochem Mol Biol 2024; 240:106508. [PMID: 38521361 DOI: 10.1016/j.jsbmb.2024.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Mastitis is one the most widespread and serious diseases in dairy cattle. Recurrent and chronic infections are often attributable to certain pathogenicity mechanisms in mastitis-causing pathogens such as Staphylococcus spp. These include growing in biofilm and invading cells, both of which make it possible to resist or evade antimicrobial therapies and the host's immune system. This study tested the effects of active vitamin D3 (i.e., calcitriol or 1,25-dihydroxyvitamin D3) on the internalization and phagocytosis of biofilm-forming Staphylococcus spp. isolated from animals with mastitis. Two established bovine cell lines were used: MAC-T (mammary epithelial cells) and BoMac (macrophages). Calcitriol (0-200 nM) did not affect the viability of MAC-T cells nor that of BoMac cells after 24 and 72 h. Concentrations of 0-100 mM for 24 h upregulated the expression of 24-hydroxylase in MAC-T cells, but did not alter that of VDR. Pre-treatment of the cells with calcitriol for 24 h decreased the internalization of S. aureus V329 into MAC-T cells (0-100 nM), and stimulated the phagocytosis of the same strain and of S. xylosus 4913 (0-10 nM). Calcitriol and two conditioned media, obtained by treating the cells with 25-200 nM of the metabolite for 24 h, were also assessed in terms of their antimicrobial and antibiofilm activity. Neither calcitriol by itself nor the conditioned media affected staphylococcal growth or biofilm formation (0-200 nM for 12 and 24 h, respectively). In contrast, the conditioned media (0-100 nM for 24 h) decreased the biomass of preformed non-aureus staphylococcal biofilms and killed the bacteria within them, without affecting metabolic activity. These effects may be mediated by reactive oxygen species and proteins with antimicrobial and/or antibiofilm activity. In short, calcitriol could make pathogens more accessible to antimicrobial therapies and enhance bacterial clearance by professional phagocytes. Moreover, it may modulate the host's endogenous defenses in the bovine udder and help combat preformed non-aureus staphylococcal biofilms (S. chromogenes 40, S. xylosus 4913, and/or S. haemolyticus 6). The findings confirm calcitriol's potential as an adjuvant to prevent and/or treat intramammary infections caused by Staphylococcus spp., which would in turn contribute to reducing antibiotic use on dairy farms.
Collapse
Affiliation(s)
- Georgina Tiraboschi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - María Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Virginia Angiolini
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Lucía Rodriguez-Berdini
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina.
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina.
| |
Collapse
|
7
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
8
|
Preziuso S, Attili AR, Cuteri V. Methicillin-resistant staphylococci in clinical bovine mastitis: occurrence, molecular analysis, and biofilm production. Vet Res Commun 2024; 48:969-977. [PMID: 38036851 DOI: 10.1007/s11259-023-10268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Staphylococcus aureus is an important pathogen that causes mastitis in cattle, and the emergence of methicillin-resistant S. aureus (MRSA) poses a threat to veterinary and human medicine. The aims of the study were to investigate the prevalence of MRSA and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolated from clinical mastitis, their ability to form biofilms, and the antimicrobial susceptibility of S. aureus strains. In addition, the Staphylococcal Cassette Chromosome mec (SCCmec) type, spa type and the presence of Panton-Valentine Leucocidin in MRSA were evaluated. A total of 326 staphylococcal strains were screened by multiplex-PCR for S. aureus and Staphylococcus intermedius group (SIG) identification. The S. aureus strains (n = 163) were subjected to phenotypic testing for antimicrobial susceptibility and biofilm formation. Molecular analysis was performed on MRSA mecA-positive strains. Of 163 S. aureus isolates, 142 strains (87.1%) were resistant to at least one antibiotic, and all 19 MRSA strains were resistant to at least four out of five antibiotics tested. All S. aureus strains harboured the icaA gene and were biofilm producers. Nineteen MR-CoNS strains were also isolated. The most prevalent spa types among MRSA were t001 (57.9%) and t037 (31.6%), while one MRSA was type t008 and one was type t041. Most MRSA were SCCmec type I (63.2%) and III (31.6%) and only one strain was type IV. None of the MRSA isolates had the PVL gene. The prevalence of multidrug-resistant S. aureus in bovine mastitis is a serious concern. The finding of MRSA with spa types predominant in humans and infrequent in Italian cows and with SCCmec infrequently found in bovine milk or cheese suggest a human origin of these strains. The ability of MRSA and MR-CoNS involved in bovine mastitis to be transferred to humans and vice versa poses a public health concern.
Collapse
Affiliation(s)
- Silvia Preziuso
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy.
| |
Collapse
|
9
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
10
|
Dai J, Huang J, Wu S, Zhang F, Li Y, Rong D, Zhao M, Ye Q, Gu Q, Zhang Y, Wei X, Zhang J, Wu Q. Occurrence, Antibiotic Susceptibility, Biofilm Formation and Molecular Characterization of Staphylococcus aureus Isolated from Raw Shrimp in China. Foods 2023; 12:2651. [PMID: 37509743 PMCID: PMC10378822 DOI: 10.3390/foods12142651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to determine the prevalence and characterization of Staphylococcus aureus isolated from 145 shrimp samples from 39 cities in China. The results show that 41 samples (28%) from 24 cities were positive, and most of the positive samples (39/41, 95.1%) were less than 110 MPN/g. Antimicrobial susceptibility testing showed that only seven isolates were susceptible to all 24 antibiotics, whereas 65.1% were multidrug-resistant. Antibiotic resistance genes that confer resistance to β-lactams, aminoglycosides, tetracycline, macrolides, lincosamides and streptogramin B (MLSB), trimethoprim, fosfomycin and streptothricin antibiotics were detected. All S. aureus isolates had the ability to produce biofilm and harbored most of the biofilm-related genes. Genes encoding one or more of the important virulence factors staphylococcal enterotoxins (sea, seb and sec), toxic shock syndrome toxin 1 (tsst-1) and Panton-Valentine leukocidin (PVL) were detected in 47.6% (30/63) of the S. aureus isolates. Molecular typing showed that ST15-t085 (27.0%, 17/63), ST1-t127 (14.3%, 9/63) and ST188-t189 (11.1%, 7/63) were the dominant genetic types. The finding of this study provides the first comprehensive surveillance on the incidence of S. aureus in raw shrimp in China. Some retained genotypes found in this food have been linked to human infections around the world.
Collapse
Affiliation(s)
- Jingsha Dai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanyu Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
11
|
Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol 2023; 14:1190790. [PMID: 37455736 PMCID: PMC10344457 DOI: 10.3389/fmicb.2023.1190790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
Collapse
Affiliation(s)
- Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Wenli Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Antimicrobial susceptibility and biofilm forming ability of staphylococci from subclinical buffalo mastitis. J DAIRY RES 2023:1-4. [PMID: 36911973 DOI: 10.1017/s0022029923000080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The starting objective of this research communication was to determine the prevalence of subclinical mastitis in buffalo in Turkey. We also seeked to isolate and identify staphylococci, determine their antimicrobial susceptibilities and biofilm-forming abilities as well as investigating the presence of biofilm-related genes and microbial surface components recognizing adhesive matrix molecules. A total of 107 (66.9%) staphylococci (28 S. aureus and 79 coagulase-negative staphylococci, CoNS) were isolated from 160 mastitic milk samples collected from 200 lactating water buffalos. The staphylococci were especially resistant to beta-lactams except for cefoxitin but were less resistant to the other antimicrobials that were tested. Based on the Congo red agar method, 92.9% of the S. aureus and 70.9% of the CoNS isolates were positive for biofilm-forming ability, while all S. aureus and 97.5% of CoNS isolates were positive by a microtiter plate analysis. The presence of icaA and icaD genes was not always correlated with biofilm synthesis, and even in the absence of these genes, the isolates were able to synthesize biofilm.
Collapse
|
13
|
Breser ML, Tisera L, Orellano MS, Bohl LP, Isaac P, Bianco I, Porporatto C. Chitosan can improve antimicrobial treatment independently of bacterial lifestyle, biofilm biomass intensity and antibiotic resistance pattern in non-aureus staphylococci (NAS) isolated from bovine clinical mastitis. Front Microbiol 2023; 14:1167693. [PMID: 37152721 PMCID: PMC10162019 DOI: 10.3389/fmicb.2023.1167693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Bovine mastitis is the most frequent and costly disease that affects dairy cattle. Non-aureus staphylococci (NAS) are currently one of the main pathogens associated with difficult-to-treat intramammary infections. Biofilm is an important virulence factor that can protect bacteria against antimicrobial treatment and prevent their recognition by the host's immune system. Previously, we found that chronic mastitis isolates which were refractory to antibiotic therapy developed strong biofilm biomass. Now, we evaluated the influence of biofilm biomass intensity on the antibiotic resistance pattern in strong and weak biofilm-forming NAS isolates from clinical mastitis. We also assessed the effect of cloxacillin (Clx) and chitosan (Ch), either alone or in combination, on NAS isolates with different lifestyles and abilities to form biofilm. The antibiotic resistance pattern was not the same in strong and weak biofilm producers, and there was a significant association (p ≤ 0.01) between biofilm biomass intensity and antibiotic resistance. Bacterial viability assays showed that a similar antibiotic concentration was effective at killing both groups when they grew planktonically. In contrast, within biofilm the concentrations needed to eliminate strong producers were 16 to 128 times those needed for weak producers, and more than 1,000 times those required for planktonic cultures. Moreover, Ch alone or combined with Clx had significant antimicrobial activity, and represented an improvement over the activity of the antibiotic on its own, independently of the bacterial lifestyle, the biofilm biomass intensity or the antibiotic resistance pattern. In conclusion, the degree of protection conferred by biofilm against antibiotics appears to be associated with the intensity of its biomass, but treatment with Ch might be able to help counteract it. These findings suggest that bacterial biomass should be considered when designing new antimicrobial therapies aimed at reducing antibiotic concentrations while improving cure rates.
Collapse
Affiliation(s)
- Maria Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- *Correspondence: Maria Laura Breser,
| | - Lucia Tisera
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Maria Soledad Orellano
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- University of the Basque Country UPV/EHU. Responsive Polymer Therapeutics Group (POLYMAT), San Sebastián, Spain
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Ismael Bianco
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Industria, Comercio, Minería y Desarrollo Científico Tecnológico, Córdoba, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
- Carina Porporatto,
| |
Collapse
|
14
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
15
|
Characterization of Virulence Factors in Enterotoxin-Producing Staphylococcus aureus from Bulk Tank Milk. Animals (Basel) 2022; 12:ani12030301. [PMID: 35158625 PMCID: PMC8833733 DOI: 10.3390/ani12030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Staphylococcus aureus, apathogen that causes bovine mastitis, produces various virulence factors, and human consumption of milk contaminated with the S. aureus enterotoxin may pose a public health risk. This study analyzed the genetic characteristics of bovine-mastitis-related virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank milk. The results show that S. aureus isolated from bulk tank milk, not from mastitis, had a high prevalence of virulence factors and that the high presence of enterotoxins may be due to poor hygiene. Therefore, developing a strong monitoring and sanitation program for dairy factories is important to ensure hygienic milk production. Abstract Staphylococcus aureus, a persistent mastitis-causing pathogen, produces various virulence factors, including enterotoxins. This study analyzed the genetic characteristics of bovine-mastitis-related virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank milk. Among 93 S. aureus isolates from 396 dairy farms operated by 3 dairy companies in Korea, 40 (43.0%) isolates carried one or more enterotoxin genes. Moreover, S. aureus carrying enterotoxin genes showed a higher prevalence in all virulence genes tested in this study except for pvl and lukM, which were not detected in any isolate, than in the isolates without enterotoxin genes. In particular, the prevalence of six genes (hla, hlb, lukED, fnbA, clfA, and clfB) was significantly higher in S. aureus carrying the enterotoxin genes than in the isolates without the enterotoxin genes (p < 0.05). The most common multilocus sequence type of enterotoxin-producing isolates was ST188, and all isolates of ST188 harbored the see gene. S. aureus isolated from bulk tank milk, not from mastitis, had a high prevalence of virulence factors, posing a public health threat. Moreover, a high presence of enterotoxins in bulk tank milk is probably because of poor hygiene; therefore, it is important to develop strong monitoring and sanitation programs for dairy factories.
Collapse
|
16
|
Crespi E, Pereyra AM, Puigdevall T, Rumi MV, Testorelli MF, Caggiano N, Gulone L, Mollerach M, Gentilini ER, Srednik ME. Antimicrobial resistance studies in staphylococci and streptococci isolated from cows with mastitis in Argentina. J Vet Sci 2021; 23:e12. [PMID: 36448431 PMCID: PMC9715389 DOI: 10.4142/jvs.21062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Staphylococcus aureus and Streptococcus agalactiae are the main cause of clinical mastitis in dairy cattle in Argentina, whereas coagulase-negative staphylococci (CNS) and environmental streptococci are the main cause of subclinical mastitis. Bacteria isolated from infected animals show increasing antimicrobial resistance. OBJECTIVES This study aims to determine the antimicrobial resistance of staphylococci and streptococci isolated from milk with mastitis, and to genotypically characterize the methicillin-resistant (MR) staphylococci. METHODS Isolation was performed on blood agar and identification was based on biochemical reactions. Antimicrobial susceptibility was according to the Clinical and Laboratory Standards Institute guidelines. The antimicrobial resistance genes, SCCmec type and spa type were detected by the polymerase chain reaction method. RESULTS We isolated a total of 185 staphylococci and 28 streptococci from 148 milk samples. Among the staphylococcal isolates, 154 were identified as CNS and 31 as S. aureus. Among the 154 CNS, 24.6% (n = 38) were resistant to penicillin, 14.9% (n = 23) to erythromycin, 17.5% (n = 27) to clindamycin, 6.5% (n = 10) to cefoxitin and oxacillin. Among the S. aureus isolates, 16.1% (n = 5) were resistant to penicillin, 3.2% (n = 1) to cefoxitin and oxacillin (MRSA). Six MR isolates (5 CNS and 1 MRSA) were positive to the mecA gene, and presented the SCCmec IVa. The MRSA strain presented the sequence type 83 and the spa type 002. Among the 28 streptococcal isolates, 14.3% (n = 4) were resistant to penicillin, 10.7% (n = 3) to erythromycin and 14.3% (n = 4) to clindamycin. CONCLUSIONS The present findings of this study indicate a development of antimicrobial resistance in main bacteria isolated from cows with mastitis in Argentina.
Collapse
Affiliation(s)
- Elisa Crespi
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Ana M. Pereyra
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Tomás Puigdevall
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - María V. Rumi
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - María F. Testorelli
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Nicolás Caggiano
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Fisiología Animal, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Lucía Gulone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 954, Buenos Aires C1113AAD, Argentina
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 954, Buenos Aires C1113AAD, Argentina
| | - Elida R. Gentilini
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Mariela E. Srednik
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| |
Collapse
|
17
|
Carvalho LG, Alvim MMA, Fabri RL, Apolônio ACM. Staphylococcus aureus
biofilm formation in Minas Frescal cheese packaging. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas Guzella Carvalho
- Department of Parasitology, Microbiology and Immunology Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora MG CEP 36036‐900 Brazil
| | - Mariana Massi Afonso Alvim
- Department of Parasitology, Microbiology and Immunology Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora MG CEP 36036‐900 Brazil
| | - Rodrigo Luiz Fabri
- Bioactive Natural Products Laboratory Department of Biochemistry Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora MG CEP 36036‐900 Brazil
| | - Ana Carolina Morais Apolônio
- Department of Parasitology, Microbiology and Immunology Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora MG CEP 36036‐900 Brazil
| |
Collapse
|
18
|
Abd El-Aziz NK, Ammar AM, El-Naenaeey ESYM, El Damaty HM, Elazazy AA, Hefny AA, Shaker A, Eldesoukey IE. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated from bovine mastitis: new avenues for countering resistance. BMC Vet Res 2021; 17:136. [PMID: 33789637 PMCID: PMC8010958 DOI: 10.1186/s12917-021-02842-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Streptococcus agalactiae (S. agalactiae) is a contagious pathogen of bovine mastitis. It has financial implications for the dairy cattle industry in certain areas of the world. Since antimicrobial resistance increases in dairy farms, natural antimicrobials from herbal origins and nanoparticles have been given more attention as an alternative therapy. Hence, this study reported the antimicrobial and antibiofilm potentials of cinnamon oil, silver nanoparticles (AgNPs), and their combination against multidrug-resistant (MDR) S. agalactiae recovered from clinical bovine mastitis in Egypt. RESULTS Our findings revealed that 73% (146/200) of the examined milk samples collected from dairy cows with clinical mastitis were infected with Streptococci species. Of these, 9.59% (14/146) were identified as S. agalactiae and categorized as MDR. S. agalactiae isolates expressed four virulence genes (Hyl, cylE, scpB, and lmb) and demonstrated an ability to produce biofilms. Cinnamon oil showed high antimicrobial (MICs ≤0.063 μg /mL) and antibiofilm (MBIC50 = 4 μg/mL) potentials against planktonic and biofilms of S. agalactiae isolates, respectively. However, AgNPs showed reasonable antimicrobial (MICs ≤16 μg/mL) and relatively low antibiofilm (MBIC50 = 64 μg/mL) activities against screened isolates. Synergistic antimicrobial or additive antibiofilm interactions of cinnamon oil combined with AgNPs were reported for the first time. Scanning electron microscope (SEM) analysis revealed that biofilms of S. agalactiae isolates treated with cinnamon oil were more seriously damaged than observed in AgNPs cinnamon oil combination. Moreover, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) showed that cinnamon oil exerted a remarkable down-regulation of pili biosynthesis genes (pilA and pilB) and their regulator (rogB) against S. agalactiae biofilms, meanwhile the AgNPs cinnamon oil combination demonstrated a lower efficacy. CONCLUSIONS This is an in vitro preliminary approach that documented the antibiofilm potential of cinnamon oil and the inhibitory activity of cinnamon oil and its combination with AgNPs against MDR S. agalactiae recovered from clinical mastitis. Further in vivo studies should be carried out in animal models to provide evidence of concept for implementing these alternative candidates in the treatment of dairy farms infected by streptococcal mastitis in the future.
Collapse
Affiliation(s)
- Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt.
| | - Ahmed M Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - El-Sayed Y M El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Hend M El Damaty
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Asmaa A Elazazy
- Abou Hamad Veterinary Organizations, Ministry of Agriculture, Abou Hamad, Sharkia, Egypt
| | - Ahmed A Hefny
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Asmaa Shaker
- Department of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ibrahim E Eldesoukey
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
19
|
Orellano MS, Bohl LP, Breser ML, Isaac P, Falcone RD, Porporatto C. A comparative study of antimicrobial activity of differently-synthesized chitosan nanoparticles against bovine mastitis pathogens. SOFT MATTER 2021; 17:694-703. [PMID: 33216104 DOI: 10.1039/d0sm01179g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The greatest concern in dairy farming nowadays is bovine mastitis (BM), which results mainly from bacterial colonization of the mammary gland. Antibiotics are the most widely used strategy for its prevention and treatment, but overuse has led to growing antimicrobial resistance. Pathogens have also developed other mechanisms to persist in the udder, such as biofilm formation and internalization into bovine epithelial cells. New therapies are therefore needed to reduce or replace antibiotic therapies. In a previous study, we found that chitosan nanoparticles (Ch-NPs) have considerable potential for the treatment of BM. The aim of the present study was to evaluate the antimicrobial activity of differently-synthesized Ch-NPs against BM pathogens and their toxicity in bovine cells in vitro, to further explore the attributes of Ch-NPs for the prevention and treatment of intramammary infections. We also looked into their ability to inhibit biofilm formation and prevent the internalization of S. aureus into mammary epithelial cells. Finally, since an interesting approach for BM prevention is to enhance the host's immune response, we studied whether Ch-NPs could promote the release of pro-inflammatory cytokines in mammary epithelial cells. The results reveal that the bactericidal effect of Ch-NPs on BM pathogens and their ability to inhibit biofilm formation are size-dependent, with smaller particles being more efficient. In contrast, their effect on the viability of the cell lines is not size-dependent and all samples tested were non-toxic. The smallest Ch-NPs successfully prevented the internalization of S. aureus into the cells, but did not promote the production of pro-inflammatory cytokines. These findings make it possible to conclude that Ch-NPs are a great bactericidal agent which can prevent the main mechanisms developed by BM pathogens to persist in the udder.
Collapse
Affiliation(s)
- M Soledad Orellano
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina. and Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET. Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3. C.P. X5804BYA, Río Cuarto, Argentina
| | - Luciana P Bohl
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - María L Breser
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - R Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET. Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3. C.P. X5804BYA, Río Cuarto, Argentina
| | - Carina Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| |
Collapse
|
20
|
Crespi E, Pereyra AM, Puigdevall T, Rumi MV, Testorelli MF, Caggiano N, Gulone L, Mollerach M, Gentilini ER, Srednik ME. Antimicrobial resistance studies in staphylococci and streptococci isolated from cows with mastitis in Argentina. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Elisa Crespi
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Ana M. Pereyra
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Tomás Puigdevall
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - María V. Rumi
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - María F. Testorelli
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Nicolás Caggiano
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Fisiología Animal, CABA, Buenos Aires, C1427CWN, Argentina
| | - Lucía Gulone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Elida R. Gentilini
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| | - Mariela E. Srednik
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Microbiología, CABA, Buenos Aires, C1427CWN, Argentina
| |
Collapse
|
21
|
Liu K, Tao L, Li J, Fang L, Cui L, Li J, Meng X, Zhu G, Bi C, Wang H. Characterization of Staphylococcus aureus Isolates From Cases of Clinical Bovine Mastitis on Large-Scale Chinese Dairy Farms. Front Vet Sci 2020; 7:580129. [PMID: 33426015 PMCID: PMC7793989 DOI: 10.3389/fvets.2020.580129] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
Bovine mastitis is a prevalent disease that causes serious economic problems globally in the dairy industry. Staphylococcus aureus is an important pathogen of bovine mastitis. This study was conducted to characterize S. aureus isolates from clinical bovine mastitis cases in large-scale dairy herds in China. S. aureus was isolated from 624 clinical mastitis cases and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 62 S. aureus isolates were obtained. Cluster analysis, genetic diversity, quantification of biofilm formation, antimicrobial resistance, and detection of virulence genes were performed on these isolates of S. aureus. Eight isolates harbored the mecA gene and were sensitive to oxacillin. MALDI-TOF MS cluster analysis revealed that the 62 isolates were divided into three major clusters (I, II, III) and eight main groups (A–H) at the distance level of 700. The agr II was the most prevalent (56.5%). The 62 S. aureus isolates were assigned to seven spa types. The most common spa type was t529(58.1%), followed by t2196 (14.5%), t518 (14.5%), t571(6.5%), t034 (3.2%), t2734 (1.6%), and t730 (1.6%). Five STs were identified from seven representative isolates as follows: ST630/CC8, ST97/CC97, ST50, ST398, and ST705. All isolates had the ability to form biofilm. Antimicrobial resistance was most frequently observed to ciprofloxacin (29%), followed by penicillin (24.2%), and streptomycin (9.6%). All isolates harbored the fnbA, clfB (100%), icaA, and icaD genes. This study provides the basis for the development of bovine mastitis prevention program on large-scale dairy farms.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Luyao Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Chongliang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
22
|
Bohl LP, Isaac P, Breser ML, Orellano MS, Correa SG, Tolosa de Talamoni NG, Porporatto C. Interaction between bovine mammary epithelial cells and planktonic or biofilm Staphylococcus aureus: The bacterial lifestyle determines its internalization ability and the pathogen recognition. Microb Pathog 2020; 152:104604. [PMID: 33186743 DOI: 10.1016/j.micpath.2020.104604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
The main cause of mastitis, one of the most costly diseases in the dairy industry, is bacterial intramammary infection. Many of these bacteria are biofilm formers. Biofilms have been associated with resistance to antibiotics and to the host immune system. Here, we evaluated different experimental models representing bacterial biofilm lifestyle with the aim to study bacterial invasion into bovine mammary epithelial cells and the interaction of these cells with planktonic or biofilm Staphylococcus aureus. Staphylococcus aureus V329, its nonbiofilm-forming mutant and bovine mammary alveolar cells (MAC-T) were used. Bacterial invasion was studied using the gentamicin exclusion test, cell viability by trypan blue exclusion technique, TLR2 expression by flow cytometry, IL1β/IL6 production by ELISA and IL8/TNFα gene expression by real-time polymerase chain reaction. Biofilm and planktonic S. aureus showed differences in their invasion ability, with the biofilm mode showing a lower ability. Planktonic S. aureus reduced MAC-T viability after 6 h of co-culture, while biofilms did so at 24 h. MAC-T infected with planktonic bacteria showed increased TLR2 expression. Both lifestyles increased IL8 expression and IL1β/IL6 production but did not modify TNFα expression. Our results demonstrate that the bacterial lifestyle affects the invasion behavior, suggesting that biofilms reduce the bacteria-epithelial cell interaction. Planktonic cultures seem to induce higher cellular activation than biofilms. Further knowledge about the complex host-biofilm interaction is necessary to design more efficient therapies against bovine mastitis.
Collapse
Affiliation(s)
- Luciana Paola Bohl
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina.
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Bv. de la Reforma y Enfermera Gordillo, CP, 5016, Córdoba Capital, Córdoba, Argentina
| | - María Laura Breser
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina
| | - María Soledad Orellano
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina
| | - Silvia Graciela Correa
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP, 5016, Córdoba Capital, Córdoba, Argentina
| | - Nori Graciela Tolosa de Talamoni
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Bv. de la Reforma y Enfermera Gordillo, CP, 5016, Córdoba Capital, Córdoba, Argentina
| | - Carina Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900, Villa María, Córdoba, Argentina.
| |
Collapse
|
23
|
Qian Y, Xia L, Wei L, Li D, Jiang W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch Microbiol 2020; 203:707-717. [PMID: 33040179 DOI: 10.1007/s00203-020-02077-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in bacterial biofilm infections. Antibiotic treatment for infection caused by S. aureus biofilms is challenging, and few effective strategies have been developed to combat these infections. The aim of this study was to investigate the effect and possible mechanisms of artesunate on the biofilm formation of S. aureus. Bacterial growth curves were determined by a microtiter plate. Biofilm formation was determined by the crystal violet staining method and confocal laser scanning microscopy. Bacterial adhesion was assayed by the colony-counting method. The expression of virulence and adhesion genes was determined by real-time PCR. The hemolytic activity and expression of ɑ-hemolysin were analyzed using rabbit erythrocytes and Western blotting. The results showed that artesunate could significantly inhibit the biofilm formation of S. aureus in a dose-dependent manner. Artesunate could also inhibit bacterial adhesion and the expression of hla, RNAIII and agrA as well as ɑ-hemolysin production. The effect of artesunate on adhesion genes (clfA, clfB, fnbA, fnbB) had strain specificity, but it did not affect the expression of ica genes. The results indicated that artesunate might inhibit ɑ-hemolysin synthesis by the agr system, which inhibits biofilm formation.
Collapse
Affiliation(s)
- Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Li Xia
- Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
24
|
Ren Q, Liao G, Wu Z, Lv J, Chen W. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. J Dairy Sci 2020; 103:3368-3380. [PMID: 32008777 DOI: 10.3168/jds.2019-17420] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is one of the major pathogens causing mastitis in dairy herds. The colonization of dairy cows and subsequent contamination of raw milk by S. aureus, especially strains exhibiting multidrug resistance and biofilm-forming and toxin-producing abilities, remains an important issue for both dairy farmers and public health. In this study, we investigated the prevalence, antimicrobial susceptibility, biofilm formation, and genetic diversity of S. aureus from subclinical bovine mastitis in dairy farms located in southern Xinjiang, China. Sixty-five isolates from 84 subclinical mastitic milk samples were identified as S. aureus. The resistance rates to penicillin, erythromycin, clindamycin, tetracycline, gentamicin, linezolid, rifampicin, quinupudin-dafupudin, ciprofloxacin, norfloxacin, and chloramphenicol were 58.5, 44.6, 40.0, 18.5, 12.3, 10.8, 9.2, 6.2, 4.6, 4.6, and 1.5%, respectively. All isolates were susceptible to cefoxitin, sulfamethoxazole-trimethoprim, and vancomycin. Isolates from farm A showed a significantly higher resistance rate to tetracycline (16.9%) than those from farm B (1.5%). The most frequently detected virulence factors were hla (96.9%, 63/65) and hlb (100.0%, 65/65). The percentage rates of the staphylococcal enterotoxin genes sea, sec, sed, seg, seh, sei, and sej in S. aureus isolates were 4.6, 33.8, 27.7, 3.1, 41.5, 41.5, and 7.7%, respectively. The percentage rate of the sec gene in isolates from farm B (30.8%) was significantly higher than that of farm A (3.1%). The percentage rates of the tsst and pvl genes in S. aureus isolates were 26.2 and 40.0%. The percentage rate of the pvl gene in isolates from farm B (32.3%) was significantly higher than that of farm A (7.7%). The adhesion molecules fnbA, fnbB, clfA, clfB, and cna were detected in 21 (32.3%), 23 (35.4%), 65 (100.0%), 65 (100.0%), and 65 (100.0%) isolates, respectively. The percentage rates of the icaA, sarA, tcaR, ccp, luxS, and sigB genes in S. aureus isolates were 69.2, 100.0, 86.2, 95.4, 84.6, and 100.0%, respectively. The fnbB and icaA genes were more frequently detected in isolates from farm A (29.2 and 40.0%, respectively) than those from farm B (6.2 and 29.2%, respectively). The luxS gene was more often found in isolates from farm B (50.8%) than those from farm A (33.8%). Using the microplate method, 61.5, 26.2, and 10.8% of the isolates showed weak, moderate, and strong biofilm-forming abilities, respectively. Different clonal complex (CC) and spa-types were identified, including CC81, CC398, CC88, CC5405, and CC5406. Importantly, in this study we report for the first time 41 new sequence types (ST) among 44 distinct ST. These results indicated high genetic diversity of S. aureus involved in subclinical bovine mastitis in southern Xinjiang, China. The results also showed that S. aureus from subclinical bovine mastitis cases in southern Xinjiang, China, were mainly resistant to β-lactams, erythromycin, and clindamycin. Also, biofilm- and adhesion-related genes, which are increasingly known as important virulence factors in the pathogenesis of S. aureus infections, were detected at a high rate. This study could help identify predominant clones and provide surveillance measures to decrease or eliminate S. aureus contamination in raw milk of dairy cows with subclinical mastitis.
Collapse
Affiliation(s)
- Qiang Ren
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar 86-843300, China
| | - Guanghua Liao
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar 86-843300, China
| | - Zihao Wu
- College of Animal Sciences, Key Laboratory of Tarim Animal Husbandy and Science Technology of Xinjiang Production and Construction Corps, Tarim University, Alar 86-843300, China
| | - Junfan Lv
- College of Animal Sciences, Key Laboratory of Tarim Animal Husbandy and Science Technology of Xinjiang Production and Construction Corps, Tarim University, Alar 86-843300, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar 86-843300, China; College of Animal Sciences, Key Laboratory of Tarim Animal Husbandy and Science Technology of Xinjiang Production and Construction Corps, Tarim University, Alar 86-843300, China.
| |
Collapse
|
25
|
Torres G, Vargas K, Sánchez-Jiménez M, Reyes-Velez J, Olivera-Angel M. Genotypic and phenotypic characterization of biofilm production by Staphylococcus aureus strains isolated from bovine intramammary infections in Colombian dairy farms. Heliyon 2019; 5:e02535. [PMID: 31667388 PMCID: PMC6812232 DOI: 10.1016/j.heliyon.2019.e02535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/16/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
The ability of Staphylococcus aureus to form biofilms is an important virulence factor because this has been associated with persistent bovine intramammary infections. Different mechanisms of biofilm formation have been described in S. aureus; however, the process has been found to be mainly driven by the ica and bap genes. The presence of the ica and bap genes, as well as the biofilm formation in vitro were evaluated in 229 S. aureus strains isolated from bovine milk collected from different regions of Department of Antioquia, Colombia. Three different genotypes grouped into three separate clusters were identified from in vitro assays. Genotype 1 (ica positive and bap negative) was the most prevalent (78.17%), followed by genotype 2 (ica and bap positive) (12.66%) and genotype 0 (ica and bap negative) (9.17%). Biofilm formation was observed in 81.26% of the strains from which 100% of genotype 2 isolates showed biofilm formation. The biofilms formed by genotype 2 isolates were also found to have the highest optical density (>2.4). These results showed that most of the S. aureus strains were capable of biofilm formation, suggesting the virulence potential particularly in bap-positive strains.
Collapse
Affiliation(s)
- G. Torres
- Tropical Medicine Colombian Institute, CES University, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia
- Biogenesis Research Group, Faculty of Agricultural Sciences, University of Antioquia, Cra 75 No. 65-87, Medellín, Antioquia, Colombia
| | - K. Vargas
- Biogenesis Research Group, Faculty of Agricultural Sciences, University of Antioquia, Cra 75 No. 65-87, Medellín, Antioquia, Colombia
| | - M. Sánchez-Jiménez
- Tropical Medicine Colombian Institute, CES University, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia
| | - J. Reyes-Velez
- Biogenesis Research Group, Faculty of Agricultural Sciences, University of Antioquia, Cra 75 No. 65-87, Medellín, Antioquia, Colombia
| | - M. Olivera-Angel
- Biogenesis Research Group, Faculty of Agricultural Sciences, University of Antioquia, Cra 75 No. 65-87, Medellín, Antioquia, Colombia
| |
Collapse
|
26
|
Jiménez Velásquez SDC, Torres Higuera LD, Parra Arango JL, Rodríguez Bautista JL, García Castro FE, Patiño Burbano RE. [Profile of antimicrobial resistance in isolates of Staphylococcus spp. obtained from bovine milk in Colombia]. Rev Argent Microbiol 2019; 52:121-130. [PMID: 31537323 DOI: 10.1016/j.ram.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus spp. is one of the pathogens that cause bovine mastitis and may present multiple resistance to different antimicrobial groups. The aim of this study was to phenotypically identify Staphylococcus spp. isolates obtained from bovine milk and to characterize their antimicrobial resistance profile. The 101 strains were classified by phenotypic tests, their resistance to oxacillin, cefoxitin, penicillin, ampicillin, tetracycline, kanamycin, sulfamethoxazole / trimethoprim, clindamycin and erythromycin was determined by the Kirby-Bauer technique and the presence of resistance genes by PCR. A total of 65 strains was S. aureus and 36 strains were coagulase-negative staphylococci (CoNS). We found different patterns of resistance to antibiotics evaluated in strains of S. aureus and CoNS, only the resistance to ampicillin was found associated with the species (p<0.005). In the 101 strains, the mecA gene was detected in 27%, aph(3')-IIIa in 75.2%, aac(6')/aph(2")-3 in 47.4%, ant(4')-Ia in 32.7%, tetM in 63% and tetK in 43.6%; however, no association was found with the resistance to penicillin, ampicillin, cefoxitin, kanamycin and tetracycline, respectively (p>0.05). On the other hand, the blaZ gene was found in 59.4% of the 101 strains and the ermCgene in 62.3%, which was associated with resistance to β-lactams and macrolides, respectively (p<0.001). In this study, antimicrobial multiresistance was found in S. aureus and CoNS strains. This finding impacts on the dairy industry, representing a risk to public health.
Collapse
Affiliation(s)
- Sabrina Del C Jiménez Velásquez
- Corporación colombiana de investigación agropecuaria-AGROSAVIA- Centro de Investigación-Tibaitatá- Banco de Germoplasma de Microorganismos Bacterias-Virus, Mosquera, Colombia
| | - Ligia D Torres Higuera
- Corporación colombiana de investigación agropecuaria-AGROSAVIA- Centro de Investigación-Tibaitatá- Banco de Germoplasma de Microorganismos Bacterias-Virus, Mosquera, Colombia
| | | | - José L Rodríguez Bautista
- Programa de Posgrado, Universidad Federal Rural de Río de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Fredy E García Castro
- Corporación colombiana de investigación agropecuaria-AGROSAVIA- Centro de Investigación-Tibaitatá- Banco de Germoplasma de Microorganismos Bacterias-Virus, Mosquera, Colombia
| | - Rocio E Patiño Burbano
- Corporación colombiana de investigación agropecuaria-AGROSAVIA- Centro de Investigación-Tibaitatá- Banco de Germoplasma de Microorganismos Bacterias-Virus, Mosquera, Colombia.
| |
Collapse
|
27
|
Kim SJ, Moon DC, Park SC, Kang HY, Na SH, Lim SK. Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J Dairy Sci 2019; 102:11439-11448. [PMID: 31548061 DOI: 10.3168/jds.2019-17028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Coagulase-negative staphylococci (CNS) are one of the most common bovine mastitis pathogens found worldwide. In this study, we investigated the prevalence and distribution of CNS species in mastitis milk samples and further characterized the methicillin-resistant (MR) CNS. A total of 311 CNS were isolated from 3,692 quarter milk samples from 1,373 dairy cattle at 81 farms between 2013 and 2017. Further evaluation of the CNS isolates revealed 14 CNS species among the samples and 3 predominant species-namely, Staphylococcus chromogenes, Staphylococcus simulans, and Staphylococcus epidermidis. Resistance was higher in S. epidermidis than in other CNS species except for resistance against oxacillin in Staphylococcus sciuri. Resistance to β-lactams was the most common in all CNS species (8.4% in ampicillin, 21.2% in oxacillin, and 13.5% in penicillin). Conversely, only minimal resistance to cephalothin, ceftiofur, and pirlimycin/novobiocin was found. Twenty-one isolates from 4 species were mecA-carrying MRCNS strains, including 18 S. epidermidis and 1 each of S. sciuri, Staphylococcus equorum, and Staphylococcus hominis. The majority of the mecA-carrying MRCNS isolates were produced in the biofilm. Furthermore, multidrug-resistant sequence type 179 isolate produced the strongest biofilm. Seven genotypes were detected in the 18 MR S. epidermidis strains, the most predominant of which persisted on a farm for 2 yr. Our findings for the antimicrobial susceptibility profiles and genotypic characterization of the MRCNS isolates could provide valuable information for controlling the spread of resistance and the selection of appropriate antimicrobial therapies for mastitis in the future. Further, strategic antibiotic use for mastitis treatment and hygienic management practices aimed at the prevention of the growth of resistant bacteria are urgently needed on dairy farms.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu 41566, Republic of Korea
| | - Hee Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Seok Hyeon Na
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
28
|
Wuytack A, De Visscher A, Piepers S, Boyen F, Haesebrouck F, De Vliegher S. Non-aureus staphylococci in fecal samples of dairy cows: First report and phenotypic and genotypic characterization. J Dairy Sci 2019; 102:9345-9359. [PMID: 31421888 DOI: 10.3168/jds.2019-16662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/28/2019] [Indexed: 01/30/2023]
Abstract
The aims of this study were to determine whether non-aureus staphylococci (NAS) are present in rectal feces of healthy dairy cows, and if so, to delineate species to which they belong and to study several phenotypic and genotypic traits as a first step toward determining the potential impact of fecal shedding of NAS on bovine udder health. Fecal samples were aseptically collected from the rectum of 25 randomly selected clinically healthy dairy cows in a commercial dairy herd using an automated milking system. Fecal NAS were isolated and then identified at the species level using transfer RNA-intergenic spacer PCR and sequencing of the 16S rRNA housekeeping gene. Strain typing was performed using random amplification of polymorphic DNA (RAPD)-PCR. The antimicrobial resistance profiles, biofilm formation, and growth and inhibitory characteristics of all NAS isolates were evaluated. Half of the cows were shedding NAS, resulting in 31 NAS isolates belonging to 11 different species. The most prevalent species were Staphylococcus rostri (23%, n = 7), Staphylococcus cohnii (16%, n = 5), and Staphylococcus haemolyticus (13%, n = 4) with all Staphylococcus agnetis, Staphylococcus chromogenes, and Staph. rostri isolates belonging to the same strain according to RAPD banding patterns. Acquired antimicrobial resistance was observed in 28 of the 31 NAS isolates, mainly due to β-lactamase production. Most of the isolates (84%, n = 27) had a weak biofilm-forming potential, but only 2 contained the bap gene. The ica and aap genes were not detected in any of the isolates. In vitro growth of Staphylococcus aureus and Streptococcus dysgalactiae was inhibited by Staph. agnetis isolates, and Staph. chromogenes isolates were able to inhibit the growth of Strep. dysgalactiae and Streptococcus uberis. All fecal isolates were able to grow when oxygen and iron were limitedly available, mimicking the growth conditions in the mammary gland.
Collapse
Affiliation(s)
- A Wuytack
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - A De Visscher
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science, Agricultural Engineering, Burg. Van Gansberghelaan 115 bus 1, 9820 Merelbeke, Belgium
| | - S Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F Boyen
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
29
|
Nowicka D, Grywalska E. Staphylococcus aureus and Host Immunity in Recurrent Furunculosis. Dermatology 2019; 235:295-305. [DOI: 10.1159/000499184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is one of the severest and most persistent bacterial pathogens. The most frequent S. aureus infections include impetigo, folliculitis, furuncles, furunculosis, abscesses, hidradenitis suppurativa, and mastitis. S. aureus produces a great variety of cellular and extracellular factors responsible for its invasiveness and ability to cause pathological lesions. Their expression depends on the growth phase, environmental factors, and location of the infection. Susceptibility to staphylococcal infections is rooted in multiple mechanisms of host immune responses and reactions to bacterial colonization. Immunological and inflammatory processes of chronic furunculosis are based on the pathogenicity of S. aureus as well as innate and acquired immunity. In-depth knowledge about them may help to discover the whole pathomechanism of the disease and to develop effective therapeutic options. In this review, we focus on the S. aureus-host immune interactions in the pathogenesis of recurrent furunculosis according to the most recent experimental and clinical findings.
Collapse
|
30
|
Dai J, Wu S, Huang J, Wu Q, Zhang F, Zhang J, Wang J, Ding Y, Zhang S, Yang X, Lei T, Xue L, Wu H. Prevalence and Characterization of Staphylococcus aureus Isolated From Pasteurized Milk in China. Front Microbiol 2019; 10:641. [PMID: 31001225 PMCID: PMC6454862 DOI: 10.3389/fmicb.2019.00641] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important food-borne pathogens globally. It produces various toxins and invasive enzymes and can be found in numerous food products. Milk is an important source of staphylococcal food poisoning. After pasteurization, this microorganism or its enterotoxins might still remain in pasteurized milk. Therefore, this study was to investigate the contamination of S. aureus in 258 pasteurized milk from 39 cities of China. The prevalence and levels of S. aureus in these samples as well as antibiotic susceptibility profiles, virulence genes, biofilm formation, and biofilm related genes, spa typing and MLST were used to determine the characterization among the isolates. It was found 3.9% of samples were detected S. aureus in 8 of 39 cities in China. The contaminated level were not very excessive which showed the MPN values of the most positive samples (9/10) were less than 1 MPN/g. All pasteurized milk-related S. aureus isolates have ability to produce biofilm and harbored icaA, icaD, eno, clfA, clfB, fnbA, fnbB, fib genes, other biofilm related genes icaC were showed in 91.7% of isolates and cna gene were showed in 50%, except bap gene which were free in all isolates. The antibiotic susceptibility test showed that all isolates were resistant or intermediate-resistant to different concentrations of the antibiotics. Furthermore, 75.0% of the isolates were resistant to three or more antibiotic classes, which indicated multidrug resistance. The isolates had virulence potential, which showed 66.7% (8/12) of the isolates carried one or more virulence-associated genes. Molecular typing by MLST and spa typing enabled classification of these isolates into a total of 11 sequence types (STs) and spa types, which indicated high genetic diversity. Most of these types were related to various clinical S. aureus infections. Thus, the findings of this study reflect the potential risk of S. aureus infection in China. Our study also provides comprehensive analysis of the prevalence of S. aureus in pasteurized milk and helps ensure more accurate treatment of human infection with effective antibiotics.
Collapse
Affiliation(s)
- Jingsha Dai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Shi Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jiahui Huang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Feng Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Tao Lei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| |
Collapse
|
31
|
Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 2019; 126:60-67. [DOI: 10.1016/j.ijbiomac.2018.12.159] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022]
|
32
|
Comprehensive Virulence Gene Profiling of Bovine Non- aureus Staphylococci Based on Whole-Genome Sequencing Data. mSystems 2019; 4:mSystems00098-18. [PMID: 30863792 PMCID: PMC6401416 DOI: 10.1128/msystems.00098-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health. Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from intramammary infection (IMI) in dairy cattle. Virulence factors (VFs) and mechanisms by which NAS cause IMI are not fully known. Herein, we analyzed the distribution of 191 VFs in 441 genomes of 25 NAS species, after classifying VFs into functional categories: adherence (n = 28), exoenzymes (n = 21), immune evasion (n = 20), iron metabolism (n = 29), and toxins (n = 93). In addition to establishing VF gene profiles, associations of VF genes between and among functional categories were computed, revealing distinctive patterns of association among VFs for various NAS species. Associations were also computed for low, medium, and high somatic cell count (SCC) and clinical mastitis (CM) isolates, demonstrating distinctive patterns of associations for low SCC and CM isolates, but no differences between high SCC and CM isolates. To determine whether VF distributions had any association with SCC or CM, various clustering approaches, including complete linkages, Ward clustering, and t-distributed stochastic neighbor embedding, were applied. However, no clustering of isolates representing low SCC, medium SCC, or high SCC or CM was identified. Regression analysis to test for associations with individual VF functional categories demonstrated that each additional toxin and host immune evasion gene increased the odds of having high SCC or CM, although an overall increase in the number of VFs was not associated with increased SCC or occurrence of CM. In conclusion, we established comprehensive VF gene profiling, determined VF gene distributions and associations, calculated pathogenic potentials of all NAS species, and detected no clear link between VF genes and mastitis. IMPORTANCE Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health.
Collapse
|
33
|
Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 2019; 213:1-9. [PMID: 30879647 DOI: 10.1016/j.carbpol.2019.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
Staphylococcus is the most commonly isolated genus from animals with intramammary infections, and mastitis is the most prevalent disease that affects dairy cows in many countries. These pathogens can live in biofilms, a self-produced matrix, which allow them evade the innate immune system and the antibiotic therapy, thereby producing persistent infections. The aim of this study was to explore the antimicrobial potential of chitosan nanoparticles (Ch-NPs) obtained by the reverse micellar method. We found that the nanoformulation developed presents antimicrobial activity against mastitis pathogens in a dose-dependent manner. Moreover, different experiments corroborated that the antimicrobial effectiveness of Ch-NP was greater than that shown by the native polymer used in the preparation of these nanocomposites. Ch-NPs caused membrane damage to bacterial cells and inhibited bacterial biofilm formation, without affecting the viability of bovine cells. These findings show the great potential of Ch-NPs as therapeutic agent for bovine mastitis treatment.
Collapse
|
34
|
Qu Y, Zhao H, Nobrega DB, Cobo ER, Han B, Zhao Z, Li S, Li M, Barkema HW, Gao J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J Dairy Sci 2019; 102:1571-1583. [DOI: 10.3168/jds.2018-15136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
35
|
Vasileiou N, Chatzopoulos D, Gougoulis D, Sarrou S, Katsafadou A, Spyrou V, Mavrogianni V, Petinaki E, Fthenakis G. Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Vet Microbiol 2018; 224:93-99. [DOI: 10.1016/j.vetmic.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
|
36
|
Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Li F, Fanning S, Baloch Z. Prevalence and Characterization of Staphylococcus aureus Cultured From Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China. Front Microbiol 2018; 9:1123. [PMID: 29988423 PMCID: PMC6024008 DOI: 10.3389/fmicb.2018.01123] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
The colonization of dairy herds and subsequent contamination of raw milk by Staphylococcus aureus (S. aureus), especially those expressing a multi-drug resistance (MDR), biofilm and toxins producing ability, remains an important issue for both the dairy producer and public health. In this study, we investigated the prevalence, antimicrobial resistance, virulence, and genetic diversity of S. aureus in raw milk taken from 2 dairy farms in Beijing, China. Ninety (46.2%, 90/195) samples were positive for S. aureus. Resistant to penicillin (PEN) (31.3%), ciprofloxacin (18.8%) and enrofloxacin (15.6%) were the most often observed. Isolates cultured from farm B showed significantly higher resistance to penicillin (73.9%), ciprofloxacin (34.8%), enrofloxacin (34.8%), tilmicosin (17.4%), and erythromycin (17.4%) than those from farm A (p < 0.05). Totally, 94.8% S. aureus harbored at least one virulence gene and the pvl (93.8%), sec (65.6%), and sea (60.4%) genes were the most frequently detected. The pvl and sec genes were more often detected in isolates from farm A (97.3% and 84.9% respectively) than those from farm B (p < 0.05). Of all 77 staphylococcus enterotoxin (SE)-positive isolates, more than 90% could produce enterotoxins and 70.1% could produce two types. Biofilm related genes (icaA/D, clf/B, can, and fnbA) were detected in all96 isolates. All 96 isolates could produce biofilm with 8.3, 70.8, and 18.8% of the isolates demonstrating weak, moderate and strong biofilm formation, respectively. A total of 5 STs, 7 spa types (1 novel spa type t17182), 3agr types (no agrII), and 14 SmaI-pulso-types were found in this study. PFGE cluster II-CC1-ST1-t127-agr III was the most prevalent clone (56.3%). Isolates of agr III (PFGE Cluster I/II-CC1-ST1-t127/2279) had higher detection of virulence genes than those of agr I and agr IV. TheMSSA-ST398-t1456-agr I clone expressed the greatest MDRbut with no virulence genes and weakly biofilm formation. Our finding indicated a relatively high prevalence of S. aureus with less antimicrobial resistance but often positive for enterotoxigenicity and biofilm formation. This study could help identify predominant clones and provide surveillance measures to eliminate and decrease the contamination of S. aureus in raw milk of dairy cows with mastitis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaohui Lin
- Physics and Chemical Department, Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Tao Jiang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lingxian Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Unlu A, Sar T, Seker G, Erman AG, Kalpar E, Akbas MY. Biofilm formation byStaphylococcus aureusstrains and their control by selected phytochemicals. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aise Unlu
- Department of Chemistry; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| | - Taner Sar
- Department of Molecular Biology and Genetics; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| | - Gamze Seker
- Department of Molecular Biology and Genetics; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| | - Ayse Gokce Erman
- Department of Molecular Biology and Genetics; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| | - Elif Kalpar
- Department of Molecular Biology and Genetics; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
- Institute of Biotechnology; Gebze Technical University; Gebze-Kocaeli 41400 Turkey
| |
Collapse
|
38
|
Rajivgandhi G, Vijayan R, Maruthupandy M, Vaseeharan B, Manoharan N. Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb Pathog 2018. [DOI: 10.1016/j.micpath.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Breser ML, Felipe V, Bohl LP, Orellano MS, Isaac P, Conesa A, Rivero VE, Correa SG, Bianco ID, Porporatto C. Chitosan and cloxacillin combination improve antibiotic efficacy against different lifestyle of coagulase-negative Staphylococcus isolates from chronic bovine mastitis. Sci Rep 2018; 8:5081. [PMID: 29572457 PMCID: PMC5865155 DOI: 10.1038/s41598-018-23521-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis affects the health of dairy cows and the profitability of herds worldwide. Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens in bovine intramammary infection. Based on the wide range of antimicrobial, mucoadhesive and immunostimulant properties demonstrated by chitosan, we have evaluated therapy efficiency of chitosan incorporation to cloxacillin antibiotic as well as its effect against different bacterial lifestyles of seven CNS isolates from chronic intramammary infections. The therapeutic effects of combinations were evaluated on planktonic cultures, bacterial biofilms and intracellular growth in mammary epithelial cells. We found that biofilms and intracellular growth forms offered a strong protection against antibiotic therapy. On the other hand, we found that chitosan addition to cloxacillin efficiently reduced the antibiotic concentration necessary for bacterial killing in different lifestyle. Remarkably, the combined treatment was not only able to inhibit bacterial biofilm establishment and increase preformed biofilm eradication, but it also reduced intracellular bacterial viability while it increased IL-6 secretion by infected epithelial cells. These findings provide a new approach to prophylactic drying therapy that could help to improve conventional antimicrobial treatment against different forms of bacterial growth in an efficient, safer and greener manner reducing multiresistant bacteria generation and spread.
Collapse
Affiliation(s)
- María L Breser
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina.,Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Verónica Felipe
- Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Luciana P Bohl
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina.,Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - María S Orellano
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Paula Isaac
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina.,Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Agustín Conesa
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina.,Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ismael D Bianco
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Industria, Comercio, Minería y Desarrollo Científico Tecnológico, Córdoba, Argentina
| | - Carina Porporatto
- Centro de Investigación y Transferencia (CIT-CONICET), Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina. .,Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina.
| |
Collapse
|
40
|
Kaczorek E, Małaczewska J, Wójcik R, Siwicki AK. Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Vet Res 2017; 13:398. [PMID: 29282118 PMCID: PMC5745963 DOI: 10.1186/s12917-017-1322-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is a common disease in dairy cattle throughout the world and causes considerable economic losses each year. An important aetiological agent of this disease is bacteria of the genus Streptococcus; hence, exploring the mechanisms of virulence in these bacteria is an extremely important step for the development of effective prevention programmes. The purpose of our study was to determine the ability to produce biofilm and the occurrence of selected invasiveness factors among bacteria of the genus Streptococcus isolated from cattle with the clinical form of mastitis in northeastern Poland. Results Most of the isolates analysed demonstrated an ability to produce biofilm (over 70%). Virulence genes were searched for in the three most common streptococci in our experiment: S. agalactiae, S. uberis and S. dysgalactiae. For S. agalactiae, only four genes were confirmed: rib (33%), cylE (78%), bca (37%), and cfb (100%). The genes pavA, scpB, bac and lmb were not present in any of the tested strains. The dominant serotypes of the species were Ia (n = 8) and II (n = 8), in addition to some strains that were not classified in any of the groups (n = 6). Out of the eight selected genes for S. uberis (sua, pauA/skc, gapC, cfu, lbp, hasA, hasB, hasC), only one was not found (lbp). Finally, two genes were chosen for S. dysgalactiae (eno and napr), and their presence was confirmed in 76% and 86% of the strains, respectively. Conclusions The experiment showed that strains of Streptococcus spp. isolated from dairy cattle with clinical cases of mastitis in the northeastern part of Poland possess several invasiveness factors that can substantially affect the course of the disease, and this should be considered when developing targeted prevention programmes.
Collapse
Affiliation(s)
- Edyta Kaczorek
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
41
|
Ribeiro Júnior JC, de Oliveira AM, Silva FDG, Tamanini R, de Oliveira ALM, Beloti V. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. J Dairy Sci 2017; 101:75-83. [PMID: 29102138 DOI: 10.3168/jds.2017-13069] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
Refrigerated raw milk may contain psychrotrophic microorganisms that produce thermoresistant exoproteases and lipases, which may compromise the quality of processed fluid milk and dairy products during storage. The aim of this work was to quantify and identify the deteriorating psychrotrophic microbiota in Brazilian refrigerated raw milk using genetic diversity analysis. The mean psychrotrophic count was 1.1 × 104 cfu/mL. Of the total isolates, 47.8 and 29.8% showed deteriorating activity at 35°C within 48 h and 7°C within 10 d, respectively. Among the proteolytic species, more isolated by this study were Lactococcus lactis (27.3%), Enterobacter kobei (14.8%), Serratia ureilytica (8%), Aerococcus urinaeequi (6.8%), and Bacillus licheniformis (6.8%). Observed among lipolytics were E. kobei (17.7%), L. lactis (15.6%), A. urinaeequi (12.5%), and Acinetobacter lwoffii (9.4%). The isolates S. ureilytica, E. kobei, Pseudomonas spp., and Yersinia enterocolitica potentially produced alkaline metalloprotease (aprX). Despite the low counts, a considerable portion of the psychrotrophic microbiota presented spoilage potential, which reaffirms the need for rigor in the control of contamination and the importance of rapid processing as factors that maintain the quality of milk and dairy products.
Collapse
Affiliation(s)
| | - A M de Oliveira
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - F de G Silva
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - R Tamanini
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| | - A L M de Oliveira
- Biochemistry and Biotechnology Department, State University of Londrina, Paraná, 86.057-970, Brazil
| | - V Beloti
- Animal Products Inspection Laboratory, Paraná, 86.057-970, Brazil
| |
Collapse
|