1
|
Choi JK, Poudel S, Yee N, Goff JL. Deeply branching Bacillota species exhibit atypical Gram-negative staining. Microbiol Spectr 2024; 12:e0073224. [PMID: 39162559 PMCID: PMC11448272 DOI: 10.1128/spectrum.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The Gram staining method differentiates bacteria based on their cell envelope structure, with the monoderm and diderm cell envelope types traditionally being synonymous with Gram-positive and Gram-negative stain results, respectively. Monoderms have a single phospholipid membrane surrounded by a thick layer of peptidoglycan, while diderms have a lipopolysaccharide outer membrane exterior to a thin peptidoglycan layer. The Bacillota (formerly Firmicutes) phylum has members with both cell wall types, and recent phylogenetic analyses have shown that monoderm Bacillota evolved from diderm ancestors on multiple occasions. Here, we compiled Gram staining and ultrastructural data for Bacillota species with complete genomes to further investigate the evolution of Gram-positive and Gram-negative cell wall types. The results indicate that many deeply branching lineages at the root of Bacillota phylum stain Gram-negative but do not harbor genes for outer membrane protein or lipopolysaccharide biosynthesis. Phylogenetic reconstructions suggest that several deeply branching Bacillota species have retained a thin peptidoglycan layer in their cell walls, which was inherited from a diderm ancestor. Taxa with this atypical Gram-negative-staining cell wall structure include the thermophilic anaerobe Symbiobacterium thermophilum and members of the Desulfotomaculia, Syntrophamonadia, Desulfitobacteriia, Thermosediminibacteria, and Thermoanaerobacteria. Using Gram-staining results as a proxy for cell wall thickness, our analysis indicates that several independent peptidoglycan thickening events may have occurred in the evolution of the Gram-positive cell envelope. IMPORTANCE In this study, we examined the evolution of bacterial cell envelopes, specifically focusing on Gram-positive and Gram-negative cell wall types in the Bacillota phylum. Our results indicate that certain bacteria can stain Gram-negative despite having a monoderm cell wall structure, thus challenging the conventional interpretation of Gram-staining results. Our observations also question the assumption that Gram-negative staining is always indicative of a diderm structure. These findings have broader implications for understanding how and when cell walls thicken during the evolution of bacterial cell envelopes.
Collapse
Affiliation(s)
- Jessica K. Choi
- Ecology and Evolutionary Biology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Saroj Poudel
- Department of Marine and Coastal Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers, New Brunswick, New Jersey, USA
- Department of Environmental Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Jennifer L. Goff
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| |
Collapse
|
2
|
Sivasankar C, Lloren KKS, Lee JH. Deciphering the Interrelationship of arnT Involved in Lipid-A Alteration with the Virulence of Salmonella Typhimurium. Int J Mol Sci 2024; 25:2760. [PMID: 38474006 DOI: 10.3390/ijms25052760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1β with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
3
|
Yang M, Su Y, Jiang Y, Huang X, Liu Q, Kong Q. Reducing the endotoxic activity or enhancing the vaccine immunogenicity by altering the length of lipid A acyl chain in Salmonella. Int Immunopharmacol 2023; 114:109575. [PMID: 36700768 DOI: 10.1016/j.intimp.2022.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The balance of the attenuation and reactogenicity is an issue in the development of recombinant attenuated Salmonella vaccines (RASV). Some reactogenic strains produced side effects are partially induced by lipid A. As reported, the number of lipid A acyl chains influence the strength and outcome of immune responses. However, there is rarely any study to investigate the modifications of acyl chain length on the effect of the toxicity and immunogenicity in Salmonella. In this study, foreign acyltransferase genes lpxA and lpxD were introduced into S. Typhimurium, which produced the S006 (ΔaraBAD::PlppCtlpxAC10) or S007 (ΔproBA::PlppSslpxDC16) strains with C10 or C16 acyl chains respectively. The results showed that the increased polymyxin B susceptibility, reduced swimming and invasion capabilities were observed in the S006. In addition, it also exhibited a lower endotoxicity and colonization ability compared to the parent strain. The result indicated the introduction of C10 acyl chains could be as a candidate choice for lipid A detoxifying strategy in engineering bacteria. However, the longer acyl chain modification didn't obviously change these abilities. Parallelly, these modifications were introduced into a Salmonella vaccine strain to determine their influences on the immune responses against Pneumonia. After inoculation by the strain V003 (ΔaraBAD ΔproBA::PlppSslpxDC16 χ9241), the mice produced robust levels of anti-PspA IgG, and a balanced Th1/Th2 immunity, which resulted in a significant survival improvement of mice with challenging against Streptococcus pneumonia. Therefore, the combination of lipid A modification with C16 acyl chain may be a better strategy for the development of ideal RASVs.
Collapse
Affiliation(s)
- Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Qing Liu
- College of Animal Science and technology, Southwest University, Chongqing 400715, China.
| | - Qingke Kong
- College of veterinary medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Huang D, Ji F, Tan X, Qiao J, Li H, Wang Z, Wang X. Free lipid A and full-length lipopolysaccharide coexist in Vibrio parahaemolyticus ATCC33846. Microb Pathog 2023; 174:105889. [PMID: 36435436 DOI: 10.1016/j.micpath.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Lipid A plays an important role in the pathogenicity and antimicrobial resistance of Vibrio parahaemolyticus, but little is known about the structure and biosynthesis of lipid A in V. parahaemolyticus. In this study, lipid A species were either directly extracted or obtained by the acid hydrolysis of lipopolysaccharide from V. parahaemolyticus ATCC33846 cells and analyzed by thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. Several lipid A species in V. parahaemolyticus cells were characterized, and two of these species were not connected to polysaccharides. One free lipid A species has the similar structure as the hexa-acylated lipid A in Escherichia coli, and the other is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain. Three lipid A species were isolated by the acid hydrolysis of lipopolysaccharide: the 1st one has the similar structure as the hexa-acylated lipid A in E. coli, the 2nd one is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain and a secondary 2-OH C12:0 acyl chain, and the 3rd one is equal to the 2nd species with a phosphoethanolamine modification. These results are important for understanding the biosynthesis of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Välikangas T, Suomi T, Chandler CE, Scott AJ, Tran BQ, Ernst RK, Goodlett DR, Elo LL. Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach. Nat Commun 2022; 13:7877. [PMID: 36550114 PMCID: PMC9780321 DOI: 10.1038/s41467-022-35564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, and has only few time points and biological replicates. To address this need, we provide a comprehensive evaluation of several existing differential expression methods for high-throughput longitudinal omics data and introduce a Robust longitudinal Differential Expression (RolDE) approach. The methods are evaluated using over 3000 semi-simulated spike-in proteomics datasets and three large experimental datasets. In the comparisons, RolDE performs overall best; it is most tolerant to missing values, displays good reproducibility and is the top method in ranking the results in a biologically meaningful way. Furthermore, RolDE is suitable for different types of data with typically unknown patterns in longitudinal expression and can be applied by non-experienced users.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | | | - Alison J Scott
- University of Maryland - Baltimore, Baltimore, MD, 21201, USA
| | - Bao Q Tran
- US Army 20th Support Command CBRNE Analytical and Remediation Activity, Baltimore, MD, 21010-5424, USA
| | - Robert K Ernst
- University of Maryland - Baltimore, Baltimore, MD, 21201, USA
| | - David R Goodlett
- University of Victoria, Victoria, BC, V8P 3E6, Canada
- International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
6
|
Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress. mBio 2021; 12:e0129521. [PMID: 34425709 PMCID: PMC8406137 DOI: 10.1128/mbio.01295-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To maintain optimal membrane dynamics, cells from all domains of life must acclimate to various environmental signals in a process referred to as homeoviscous adaptation. Alteration of the lipid composition is critical for maintaining membrane fluidity, permeability of the lipid bilayer, and protein function under diverse conditions. It is well documented, for example, that glycerophospholipid content varies substantially in both Gram-negative and Gram-positive bacteria with changes in growth temperature. However, in the case of Gram-negative bacteria, far less is known concerning structural changes in lipopolysaccharide (LPS) or lipooligosaccharide (LOS) during temperature shifts. LPS/LOS is anchored at the cell surface by the highly conserved lipid A domain and localized in the outer leaflet of the outer membrane. Here, we identified a novel acyltransferase, termed LpxS, involved in the synthesis of the lipid A domain of Acinetobacter baumannii. A. baumannii is a significant, multidrug-resistant, opportunistic pathogen that is particularly difficult to clear from health care settings because of its ability to survive under diverse conditions. LpxS transfers an octanoate (C8:0) fatty acid, the shortest known secondary acyl chain reported to date, replacing a C12:0 fatty acid at the 2' position of lipid A. Expression of LpxS was highly upregulated under cold conditions and likely increases membrane fluidity. Furthermore, incorporation of a C8:0 acyl chain under cold conditions increased the effectiveness of the outer membrane permeability barrier. LpxS orthologs are found in several Acinetobacter species and may represent a common mechanism for adaptation to cold temperatures in these organisms. IMPORTANCE To maintain cellular fitness, the composition of biological membranes must change in response to shifts in temperature or other stresses. This process, known as homeoviscous adaptation, allows for maintenance of optimal fluidity and membrane permeability. Here, we describe an enzyme that alters the fatty acid content of A. baumannii LOS, a major structural feature and key component of the bacterial outer membrane. Although much is known regarding how glycerophospholipids are altered during temperature shifts, our understanding of LOS or LPS alterations under these conditions is lacking. Our work identifies a cold adaptation mechanism in A. baumannii, a highly adaptable and multidrug-resistant pathogen.
Collapse
|
7
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
8
|
Phosphorylated Hexa-Acyl Disaccharides Augment Host Resistance Against Common Nosocomial Pathogens. Crit Care Med 2020; 47:e930-e938. [PMID: 31567352 DOI: 10.1097/ccm.0000000000003967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To determine whether synthetic phosphorylated hexa-acyl disaccharides provide antimicrobial protection in clinically relevant models of bacterial infection. DESIGN Laboratory study. SETTING University laboratory. SUBJECTS BALB/c, C57BL/10J, and C57BL/10ScNJ mice. INTERVENTIONS Mice were treated with lactated Ringer's (vehicle) solution, monophosphoryl lipid A, or phosphorylated hexa-acyl disaccharides at 48 and 24 hours prior to intraperitoneal Pseudomonas aeruginosa or IV Staphylococcus aureus infection. Leukocyte recruitment, cytokine production, and bacterial clearance were measured 6 hours after P. aeruginosa infection. In the systemic S. aureus infection model, one group of mice was monitored for 14-day survival and another for S. aureus tissue burden at 3 days postinfection. Duration of action for 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide was determined at 3, 10, and 14 days using a model of intraperitoneal P. aeruginosa infection. Effect of 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide on in vivo leukocyte phagocytosis and respiratory burst was examined. Leukocyte recruitment, cytokine production, and bacterial clearance were measured after P. aeruginosa infection in wild-type and toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide or vehicle to assess receptor specificity. MEASUREMENTS AND MAIN RESULTS During intraperitoneal P. aeruginosa infection, phosphorylated hexa-acyl disaccharides significantly attenuated infection-induced hypothermia, augmented leukocyte recruitment and bacterial clearance, and decreased cytokine production. At 3 days post S. aureus infection, bacterial burden in lungs, spleen, and kidneys was significantly decreased in mice treated with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides, which was associated with improved survival. Leukocyte phagocytosis and respiratory burst functions were enhanced after treatment with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides. A time course study showed that monophosphoryl lipid A- and 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide-mediated protection against P. aeruginosa lasts for up to 10 days. Partial loss of augmented innate antimicrobial responses was observed in toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide. CONCLUSIONS Phosphorylated hexa-acyl disaccharides significantly augment resistance against clinically relevant Gram-negative and Gram-positive infections via enhanced leukocyte recruitment, phagocytosis, and respiratory burst functions of innate leukocytes. Improved antimicrobial protection persists for up to 10 days and is partially mediated through toll-like receptor 4.
Collapse
|