1
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Akbar NU, Ahmad S, Khan TA, Tayyeb M, Akhter N, Shafiq L, Khan SN, Alam MM, Abdullah AM, Rehman MFU, Bajaber MA, Akram MS. Consanguineous marriages increase the incidence of recurrent tuberculosis: Evidence from whole exome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105559. [PMID: 38266757 DOI: 10.1016/j.meegid.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND In this study, we have identified multiple mutations in the IL-12R1 gene among Pakistani patients who have inherited them through consanguineous marriages. These patients have experienced severe Bacille-Calmette-Guérin (BCG) infection as well as recurrent tuberculosis. We will demonstrate the pivotal role of interleukin (IL)-12/interferon (IFN)-γ axis in the regulation of mycobacterial diseases. METHODOLOGY First, we checked the patients' medical records, and then afterward, we assessed interferon-gamma (IFN-γ) production through ELISA. Following that, DNA was extracted to investigate IL-12/IFN- abnormalities. Whole exome sequencing was conducted through Sanger sequencing. Secretory cytokine levels were compared from healthy control of the same age groups and they were found to be considerably less in the disease cohort. To evaluate the probable functional impact of these alterations, an in silico study was performed. RESULTS The study found that the patients' PBMCs produced considerably less IFN-γ than expected. Analysis using flow cytometry showed that activated T cells lacked surface expression of IL-12Rβ1. Exon 7 of the IL-12Rβ1 gene, which encodes a portion of the cytokine binding region (CBR), and exon 10, which encodes the fibronectin-type III (FNIII) domain, were found to have the mutations c.641 A > G; p.Q214R and c.1094 T > C; p.M365T, respectively. In silico analysis showed that these mutations likely to have a deleterious effect on protein function. CONCLUSION Our findings indicate the significant contribution of the IL-12/IFN-γ is in combating infections due to mycobacterium. Among Pakistani patients born to consanguineous marriages, the identified mutations in the IL-12Rβ-1 gene provide insights into the genetic basis of severe BCG infections and recurrent tuberculosis. The study highlights the potential utility of newborn screening in regions with mandatory BCG vaccination, enabling early detection and intervention for primary immunodeficiencies associated with mycobacterial infections. Moreover, the study suggests at the potential role of other related genes such as IL-23Rβ1, TYK2, or JAK2 in IFN-γ production, warranting further investigation.
Collapse
Affiliation(s)
- Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Tayyeb
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Naheed Akhter
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Laraib Shafiq
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Alduwish Manal Abdullah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK.
| |
Collapse
|
3
|
Essadssi S, Benhsaien I, Bakhchane A, Charoute H, Abdelghaffar H, Bousfiha AA, Barakat A. A Homozygous RAG1 Gene Mutation in a Case of Combined Immunodeficiency: Clinical, Molecular, and Computational Analysis. Hum Hered 2020; 84:272-278. [PMID: 33075768 DOI: 10.1159/000510062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The recombination-activating gene 1 and 2 (RAG1/RAG2) proteins are essential to initiate the V(D)J recombination process, the result is a diverse repertoire of antigen receptor genes and the establishment of the adaptive immunity. RAG1 mutations can lead to multiple forms of combined immunodeficiency. METHODS In this report, whole exome sequencing was performed in a Moroccan child suffering from combined immunodeficiency, with T and B lymphopenia, autoimmune hemolytic anemia, and cytomegalovirus (CMV) infection. RESULTS After filtering data and Sanger sequencing validation, one homozygous mutation c.2446G>A (p.Gly816Arg) was identified in the RAG1 gene. CONCLUSION This finding expands the spectrum of immunological and genetic profiles linked to RAG1 mutation, it also illustrates the necessity to consider RAG1 immunodeficiency in the presence of autoimmune hemolytic anemia and CMV infection, even assuming the immunological phenotype appears more or less normal.
Collapse
Affiliation(s)
- Soukaina Essadssi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Amina Bakhchane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco,
| |
Collapse
|
4
|
Fekrvand S, Yazdani R, Olbrich P, Gennery A, Rosenzweig SD, Condino-Neto A, Azizi G, Rafiemanesh H, Hassanpour G, Rezaei N, Abolhassani H, Aghamohammadi A. Primary Immunodeficiency Diseases and Bacillus Calmette-Guérin (BCG)-Vaccine-Derived Complications: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1371-1386. [PMID: 32006723 DOI: 10.1016/j.jaip.2020.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) vaccine is a live attenuated bacterial vaccine derived from Mycobacterium bovis, which is mostly administered to neonates in regions where tuberculosis is endemic. Adverse reactions after BCG vaccination are rare; however, immunocompromised individuals and in particular patients with primary immunodeficiencies (PIDs) are prone to develop vaccine-derived complications. OBJECTIVE To systematically review demographic, clinical, immunologic, and genetic data of PIDs that present with BCG vaccine complications. Moreover, we performed a meta-analysis aiming to determine the BCG-vaccine complications rate for patients with PID. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (1966 to September 2018) introducing terms related to PIDs, BCG vaccination, and BCG vaccine complications. Studies with human subjects with confirmed PID, BCG vaccination history, and vaccine-associated complications (VACs) were included. RESULTS A total of 46 PIDs associated with BCG-VAC were identified. Severe combined immunodeficiency was the most common (466 cases) and also showed the highest BCG-related mortality. Most BCG infection cases in patients with PID were reported from Iran (n = 219 [18.8%]). The overall frequency of BCG-VAC in the included 1691 PID cases was 41.5% (95% CI, 29.9-53.2; I2 = 98.3%), based on the results of the random-effect method used in this meta-analysis. Patients with Mendelian susceptibility to mycobacterial diseases had the highest frequency of BCG-VACs with a pooled frequency of 90.6% (95% CI, 79.7-1.0; I2 = 81.1%). CONCLUSIONS Several PID entities are susceptible to BCG-VACs. Systemic neonatal PID screening programs may help to prevent a substantial amount of BCG vaccination complications.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Seville, Spain
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, and Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Md
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network for Immunology in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
ul Akbar N, Khan SN, Amin MU, Ishfaq M, Cabral-Marques O, Schimke LF, Iqbal A, Ullah I, Hussain M, Ali I, Khan N, El Khawanky N, Rahman H, Khan TA. Novel nonsense IL-12Rβ1 mutation associated with recurrent tuberculosis. Immunol Res 2019; 67:408-415. [DOI: 10.1007/s12026-019-09094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Shen J, Jiang L, Gao Y, Ou R, Yu S, Yang B, Wu C, Tan W. A Novel RAG1 Mutation in a Compound Heterozygous Status in a Child With Omenn Syndrome. Front Genet 2019; 10:913. [PMID: 31632441 PMCID: PMC6783574 DOI: 10.3389/fgene.2019.00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Omenn syndrome is a rare autosomal recessive disorder characterized by severe, combined immunodeficiency and autoimmune features. In this case study, we found Omenn syndrome in a 3-month-old boy with recurrent infection, erythroderma, axillary lymphadenopathy, and hepatosplenomegaly. The numbers of eosinophile granulocytes and the levels of immunoglobulin E in his blood were distinctly elevated. Circulating B cells were absent, and the numbers of activated T lymphocytes were present in his peripheral blood. The production of T cell cytokines was significantly higher in the patient compared to the control samples except for interferon gamma. Whole exome sequencing revealed that the patient carried compound heterozygous mutations in the RAG1 gene, which included a previously undescribed frameshift mutation (exon 2, 2491_2497del, p. K830fsX4) and a missense mutation (exon 2, 2923 C > T, p.R975W).
Collapse
Affiliation(s)
- Juan Shen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Li Jiang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongqiong Ou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Weiping Tan
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Salari F, Zaremehrjardi F, Arshi S, Bemanian MH, Fallahpour M, Shokri S, Seif F, Movahedi M, Nabavi M. A newly found homozygous mutation in recombination activating gene 1 in a patient with leaky severe combined immunodeficiency disorder. Mol Biol Rep 2019; 46:6571-6575. [PMID: 31520268 DOI: 10.1007/s11033-019-05031-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/08/2019] [Indexed: 12/01/2022]
Abstract
The recombination activating genes, including RAG1 and RAG2, are essential for V(D)J somatic recombination in lymphocytes. Leaky severe combined immunodeficiency disorder (SCID) is characterized by normal or intermediate T cells and normal to absent B cells associated with partial T cell and B cell dysfunction. We present a newly found RAG1 deficiency in a 21-year-old boy with leaky SCID. Immunoglobulin levels, flow cytometry, and whole exome sequencing (WES) were evaluated. Flow cytometric analysis revealed a decreased number of CD3+, CD4+, and CD8+ T cells, and B cells whereas NK cell counts were normal. Immunoglobulin levels were also decreased. The WES revealed a newly found homozygous mutation of RAG1 gene (NM_000448: exon 2: c.C2275T). Atypical features, including leukopenia, candidiasis, and low lymphocyte counts in patients with late-onset combined immunodeficiency disorders (CID) such as leaky SCID due to RAG1 deficiency may result in misdiagnosis and inadequate therapy instead of adopting the curative hematopoietic stem cell transplantation in these patients.
Collapse
Affiliation(s)
- Fereshteh Salari
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zaremehrjardi
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Fallahpour
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- Academic Center for Education, Culture, and Research, Tehran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Immunology Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Nabavi
- Department of Allergy & Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lev A, Simon AJ, Barel O, Eyal E, Glick-Saar E, Nayshool O, Birk O, Stauber T, Hochberg A, Broides A, Almashanu S, Hendel A, Lee YN, Somech R. Reduced Function and Diversity of T Cell Repertoire and Distinct Clinical Course in Patients With IL7RA Mutation. Front Immunol 2019; 10:1672. [PMID: 31379863 PMCID: PMC6650764 DOI: 10.3389/fimmu.2019.01672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
The alpha subunit of IL-7 receptor (IL7R7α) is critical for the differentiation of T cells, specifically for the development and maintenance of γδT cells. Mutations in IL7RA are associated with Severe Combined Immunodeficiency (SCID). Infants with IL7RA deficiency can be identified through newborn screening program. We aimed at defining the immunological and genetic parameters that are directly affected by the IL7RA mutation on the immune system of five unrelated patients which were identified by our newborn screening program for SCID. The patients were found to have a novel identical homozygote mutation in IL7RA (n.c.120 C>G; p.F40L). Both surface expression of IL7Rα and functionality of IL-7 signaling were impaired in patients compared to controls. Structural modeling demonstrated instability of the protein structure due to the mutation. Lastly the TRG immune repertoire of the patients showed reduced diversity, increased clonality and differential CDR3 characteristics. Interestingly, the patients displayed significant different clinical outcome with two displaying severe clinical picture of immunodeficiency and three had spontaneous recovery. Our data supports that the presented IL7RA mutation affects the IL-7 signaling and shaping of the TRG repertoire, reinforcing the role of IL7RA in the immune system, while non-genetic factors may exist that attribute to the ultimate clinical presentation and disease progression.
Collapse
Affiliation(s)
- Atar Lev
- The National Lab for Diagnosing SCID - The Israeli Newborn Screening Program, Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Israel Ministry of Health, Tel HaShomer, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Amos J Simon
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Eyal
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Efrat Glick-Saar
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Omri Nayshool
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Ohad Birk
- Soroka Medical Center, Genetics Institute, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tali Stauber
- The National Lab for Diagnosing SCID - The Israeli Newborn Screening Program, Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Israel Ministry of Health, Tel HaShomer, Israel
| | - Amit Hochberg
- Department of Pediatrics, Hillel Yaffe Medical Center, Hadera, Israel
| | - Arnon Broides
- Faculty of Health Sciences, Soroka University Medical Center, Pediatric Immunology Clinic, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Almashanu
- The National Center for Newborn Screening, Israel Ministry of Health, Tel HaShomer, Israel
| | - Ayal Hendel
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Yu Nee Lee
- The National Lab for Diagnosing SCID - The Israeli Newborn Screening Program, Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Israel Ministry of Health, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- The National Lab for Diagnosing SCID - The Israeli Newborn Screening Program, Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Israel Ministry of Health, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|