1
|
Karayigit MO, Dincel GC. Role of ADAMTS-13 and nNOS expression in neuropathogenesis of listeric encephalitis of small ruminants. Biotech Histochem 2020; 95:584-596. [PMID: 32237909 DOI: 10.1080/10520295.2020.1743359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We investigated the expression of A disintegrin and metalloprotease with thrombospondin type I repeats-13 (ADAMTS-13) in the central nervous system (CNS), because it is related to blood-brain barrier (BBB) permeability. We also investigated 8-OHdG, caspase-3 and neuronal nitric oxide synthase (nNOS) expression for the cytotoxic effects of oxidative stress (OS) and nNOS, and their relation to apoptosis. We also investigated the neuroimmunopathology caused by L. monocytogenes. Brain tissues were obtained from 10 lambs and 10 kids with listeric meningoencephalitis, and healthy brain tissue from six lambs and six kids. Serial sections of brain were stained by hematoxylin and eosin (H & E), and using immunohistochemistry (IHC) for L. monocytogenes antigen, ADAMTS-13, 8-hydroxy-2'-deoxyguanosine (8-OHdG), nNOS and caspase-3. We found that ADAMTS-13, 8-OHdG, nNOS and caspase-3 expression in the brain was increased in L. Monocytogenes infected animals compared to uninfected controls. Intense staining for 8-OHdG was observed only in neurons and glia that were exposed to OS. ADAMTS-13 was increased significantly, which may play a role in regulating and protecting BBB integrity and cells of the CNS in cases of listeric encephalitis. Increased expression of ADAMTS-13 may be critical for supporting the survival of neurons and glia. We found that L. monocytogenes-related increases in OS and nNOS, and that the associated apoptosis, may participate in neurodegeneration and neuropathology in listeric encephalitis.
Collapse
Affiliation(s)
- M O Karayigit
- Departmant of Pathology, Faculty of Veterinary Medicine, University of Cumhuriyet , Sivas, Turkey
| | - G C Dincel
- Eskil Vocational High School, University of Aksaray , Eskil, Turkey
| |
Collapse
|
2
|
Experimental infection by Neospora caninum in gerbil reduces activity of enzymes involved in energy metabolism. Exp Parasitol 2019; 208:107790. [PMID: 31697939 DOI: 10.1016/j.exppara.2019.107790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Neospora caninum is a protozoan that has tropism for the central nervous system. The aim of this study was to determine whether experimental infection of gerbils would interfere with activity of enzymes associated with energy metabolism. We randomized 20 gerbils into two groups (ten animals per group): the control group (healthy animals; uninfected) and the infected group (experimentally infected with dose 7.8 × 102 tachyzoites of N. caninum per gerbil). On day six and twelve post-infection (PI), brain and spleen tissues were collected for biochemical and histopathological analyses. No histopathological lesions were observed in the brains of infected animals; however, inflammatory infiltrates were found in the spleen. Significantly greater levels of reactive oxygen species (ROS) were observed in the brain and spleen of infected gerbils than in the control group at 12 days PI. Cytosolic creatine kinase (CK-CYT), mitochondrial creatine kinase (CK-MIT), and pyruvate kinase (PK) activities were lower in the brains of infected gerbils than in those of the control group on day 12 PI. There was significantly less CK-CYT activity in the spleens of infected gerbils on day 6 and 12 PI. Finally, there was significantly less sodium-potassium ion pump (Na+/K+ ATPase) activity in the brains and spleens of infected gerbils on day 12 PI. These data suggest that experimental infection with N. caninum interfered with energy metabolism associated with ATP homeostasis in the brain and spleen, directly or indirectly, apparently mediated by ROS overproduction, contributing to inhibition of Na+/K+ ATPase activity.
Collapse
|
3
|
Branchial bioenergetics dysfunction as a relevant pathophysiological mechanism in freshwater silver catfish (Rhamdia quelen) experimentally infected with Flavobacterium columnare. Microb Pathog 2019; 138:103817. [PMID: 31672529 DOI: 10.1016/j.micpath.2019.103817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, is a serious bacterial disease responsible for causing devastating mortality rates in several species of freshwater fish, leading to severe economic losses in the aquaculture industry. Notwithstanding the enormous impacts this disease can have, very little is known regarding the interaction between the host and bacterium in terms of the mortality rate of silver catfish (Rhamdia quelen), as well its linkage to gill energetic homeostasis. Therefore, we conducted independent experiments to evaluate the mortality rates caused by F. columnare in silver catfish, as well as whether columnaris disease impairs the enzymes of the phosphoryl transfer network in gills of silver catfish and the pathways involved in this inhibition. Experiment I revealed that clinical signs started to appear 72 h post-infection (hpi), manifesting as lethargy, skin necrosis, fin erosion and gill discoloration. Silver catfish began to die at 96 hpi, and 100% mortality was observed at 120 hpi. Experiment II revealed that creatine kinase (CK, cytosolic and mitochondrial) and pyruvate kinase (PK) activities were inhibited in silver catfish experimentally infected with F. columnare, while no significant difference was observed between experimental and control groups with respect to adenylate kinase activity. Activity of the branchial sodium-potassium pump (Na+, K+-ATPase) was inhibited while reactive oxygen species (ROS) and lipid peroxidation levels were higher in silver catfish experimentally infected with F. columnare than in the control group at 72 hpi. Based on these data, the impairment of CK activity elicited by F. columnare caused a disruption in branchial energetic balance, possibly reducing ATP availability in the gills and provoking impairment of Na+, K +ATPase activity. The inhibition of CK and PK activities appears to be mediated by ROS overproduction and lipid peroxidation, both of which contribute to disease pathogenesis associated with branchial tissue.
Collapse
|
4
|
Jaguezeski AM, Souza CF, Perin G, Gebert RR, Baldi KRA, Gomes TMA, Baldissera MD, Andrade CM, Stefani LM, Da Silva AS. Changes in cardiac and hepatic energetic metabolism in gerbils infected by Listeria monocytogenes. Microb Pathog 2019; 138:103786. [PMID: 31604154 DOI: 10.1016/j.micpath.2019.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022]
Abstract
Energy metabolism is a sensitive indicator of cellular disorders. Therefore, the objective of this study was to investigate changes in cardiac and hepatic energy metabolism during listeriosis using an experimental model. We divided gerbils into two groups: Control (n = 11) and orally Infected (n = 12) with 5 × 109 CFU/mL of Listeria monocytogenes. Euthanasia and sampling were performed on days 6 and 12 post-infection (PI). Histopathological lesions were not found in the heart; however, the liver showed pyogranuloma. In the hearts of infected animals, cytosolic creatine kinase activity was lower on day 6 and 12 PI; mitochondrial creatine kinase/pyruvate kinase (PK), and sodium potassium pump (Na+/K+-ATPase) activities were lower on day 12 PI. Hepatic PK and Na+/K+-ATPase activities were lower in the infected group on day 12 PI. Lipoperoxidation was higher in the livers and hearts of infected animals on day 12 PI, and antioxidant capacity against peroxyl radicals (ACAP) was also higher in this group. These data suggest that subclinical listeriosis alters hepatic and cardiac energy metabolism, possibly related to decreased activity of phosphotransferases and ATPase. Subsequent antioxidant responses are not sufficient to correct alterations in lipid peroxidation and bioenergetics, possibly leading to important cellular pathological mechanisms.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Carine F Souza
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Géssica Perin
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - Roger R Gebert
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - Kelen R A Baldi
- Laboratory of Pathology Veterinary, Instituto Federal Catarinense (IFC), Concórdia, Santa Catarina, Brazil
| | - Teane M A Gomes
- Laboratory of Pathology Veterinary, Instituto Federal Catarinense (IFC), Concórdia, Santa Catarina, Brazil
| | - Matheus D Baldissera
- Department of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Cinthia M Andrade
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil; Department of Science and Technology, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | - Aleksandro S Da Silva
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Jaguezeski AM, Souza CF, Perin G, Reis JH, Gomes TMA, Baldissera MD, Vaucher RA, de Andrade CM, Stefani LM, Gundel SS, Ourique AF, Da Silva AS. Effect of free and nano-encapsulated curcumin on treatment and energetic metabolism of gerbils infected by Listeria monocytogenes. Microb Pathog 2019; 134:103564. [PMID: 31163248 DOI: 10.1016/j.micpath.2019.103564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
Bacterial infections require special care since the indiscriminate use of antibiotics to treat them has been linked to the emergence of resistant strains. In this sense, phytoterapeutic alternatives such as curcumin and its nanocapsules have emerged as a promising supplement in optimizing availability of bioactives and reducing the development of antimicrobial resistance. Thus, the aim of this study was to verify the effects of pure and nanoencapsulated curcumin in the treatment of experimental listeriosis in gerbils regarding many aspects including antibacterial effect, antioxidant mechanisms involved and the energetic metabolism. Four groups were used containing 6 animals each: T0 (control), T1 (infected), T2 (infected and treated with free curcumin - dose of 30 mg/kg/day) and T3 (infected and treated with nanocapsules containing curcumin - a dose of 3 mg/kg/day). Treated animals received curcumin for 6 consecutive days starting 24 h after Listeria monocytogenes infection. All animals were euthanized on the 12th day after L. monocytogenes infection. Quantitative polymerase chain reaction (qPCR) identified L. monocytogenes DNA in the spleens of all animals of the T1 group, as well as T2 (2 out of 6) and T3 (5 out of 6). The weight of the spleens confirmed the infection, since it was larger in the T1 group, differing statistically from T0, and similarly to T2 and T3. Hepatic histopathological examination showed mild infiltration of neutrophils and macrophages, except for the T3 group (only 1/6). In the liver, the pyruvate kinase activity was higher in T1 and T2 compared to T0 and T3. The adenylate kinase activity did not differ between groups. The Na+/K+ATPase activity was lower in T1 group compared to T0 and T3. Lipoperoxidation was lower in the T3 group compared to groups T0, T1 and T2. The antioxidant capacity against peroxyl radicals was higher in T1, T2 and T3 groups compared to T0. In conclusion, free curcumin showed potent antibacterial effects; however, the nanoencapsulated form was able to minimize the effects caused by L. monocytogenes regarding tissue injury, changes on enzymes of the energetic metabolism, in addition to an antioxidant effect against lipoperoxidation.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carine F Souza
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gessica Perin
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - João H Reis
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil
| | - Teane M A Gomes
- Laboratory of Pathology Veterinary, Instituto Federal Catarinense (IFC), Concórdia, Santa Catarina, Brazil
| | | | - Rodrigo A Vaucher
- Department of Biochemistry, Universidade Federal de Pelotas (UFPel), RS, Brazil
| | | | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil; Department of Science and Technology, UDESC, Florianópolis, Brazil
| | - Samanta S Gundel
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | - Aline F Ourique
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.
| |
Collapse
|