1
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
2
|
Evaluation of the Association of Recombinant Proteins NanH and PknG from Corynebacterium pseudotuberculosis Using Different Adjuvants as a Recombinant Vaccine in Mice. Vaccines (Basel) 2023; 11:vaccines11030519. [PMID: 36992103 DOI: 10.3390/vaccines11030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.
Collapse
|
3
|
Combined Transcriptomic and Proteomic of Corynebacterium pseudotuberculosis Infection in the Spleen of Dairy Goats. Animals (Basel) 2022; 12:ani12233270. [PMID: 36496794 PMCID: PMC9736189 DOI: 10.3390/ani12233270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Corynebacterium pseudotuberculosis (C. pseudotuberculosis) is a zoonotic chronic infectious disease. It mainly occurs in dairy goats reared in herds, and once it invades the dairy goats, it is difficult to completely remove it, causing great harm to the development of the sheep industry. This study mainly was based on TMT-based quantitative proteomics and RNA-seq methods to measure the spleen samples of infected dairy goats at different time periods. Nine four-month-old dairy goats were divided into three groups, with three goats in each group. The dairy goats in the first group (NC group) were inoculated with 1.0 mL of sterilized normal saline subcutaneously, and the second (72 h group) and third groups (144 h group) were inoculated with 1.0 mL of 1 × 107 cfu/mL bacterial solution subcutaneously in the neck. Significant changes in the protein and mRNA expression were observed in different infection and control groups. In the 72 h group, 85 genes with differential genes and proteins were up-regulated and 91 genes were down-regulated in this study. In the 144 h group, 38 genes with differential genes and proteins were up-regulated and 51 genes were down-regulated. It was found that 21 differentially expressed genes and proteins were co-up-regulated in the two groups. There were 20 differentially expressed genes and proteins which were co-down-regulated in both groups. The 72 h group were mainly enriched in protein processing in the endoplasmic reticulum, lysosome, amino sugar and nucleotide sugar metabolism and the estrogen signaling pathway. In the 144 h group, they were protein processing in the endoplasmic reticulum pathway which was enriched by mRNA-proteins pairs co-upregulated by the five pairs. The combined transcriptomic and proteomic analyses were performed to provide insights into the effects of C. pseudotuberculosis through several regulatory features and pathways. We found that in the early stage of infection (72 h), the co-upregulated gene-protein pairs were enriched in multiple pathways, which jointly defended against a bacterial invasion. However, in the later stages of infection (144 h), when the disease stabilizes, a few co-upregulated gene-protein pairs played a role in protein processing in the endoplasmic reticulum pathway. In addition, the mRNA and protein expressions of dairy goats infected with the bacteria at different periods of time indicated the adaptability of dairy goats to the bacteria. At the same time, it guides us to carry out a corresponding treatment and feeding management for dairy goats according to different periods of time.
Collapse
|
4
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
5
|
Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2022; 9:e12456. [PMID: 35036114 PMCID: PMC8710256 DOI: 10.7717/peerj.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis is a Gram-positive facultative intracellular pathogen and the etiologic agent of illnesses like caseous lymphadenitis in small ruminants, mastitis in dairy cattle, ulcerative lymphangitis in equines, and oedematous skin disease in buffalos. With the growing advance in high-throughput technologies, genomic studies have been carried out to explore the molecular basis of its virulence and pathogenicity. However, data large-scale functional genomics studies are necessary to complement genomics data and better understating the molecular basis of a given organism. Here we summarize, MS-based proteomics techniques and bioinformatics tools incorporated in genomic functional studies of C. pseudotuberculosis to discover the different patterns of protein modulation under distinct environmental conditions, and antigenic and drugs targets. Methodology In this study we performed an extensive search in Web of Science of original and relevant articles related to methods, strategy, technology, approaches, and bioinformatics tools focused on the functional study of the genome of C. pseudotuberculosis at the protein level. Results Here, we highlight the use of proteomics for understating several aspects of the physiology and pathogenesis of C. pseudotuberculosis at the protein level. The implementation and use of protocols, strategies, and proteomics approach to characterize the different subcellular fractions of the proteome of this pathogen. In addition, we have discussed the immunoproteomics, immunoinformatics and genetic tools employed to identify targets for immunoassays, drugs, and vaccines against C. pseudotuberculosis infection. Conclusion In this review, we showed that the combination of proteomics and bioinformatics studies is a suitable strategy to elucidate the functional aspects of the C. pseudotuberculosis genome. Together, all information generated from these proteomics studies allowed expanding our knowledge about factors related to the pathophysiology of this pathogen.
Collapse
Affiliation(s)
- Wanderson Marques da Silva
- Institute of Agrobiotechnology and Molecular Biology-(INTA/CONICET), Hurlingham, Buenos Aires, Argentina
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J Proteomics 2021; 248:104352. [PMID: 34411763 DOI: 10.1016/j.jprot.2021.104352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Corynebacterium pseudotuberculosis (C.pseudotuberculosis) is a zoonotic pathogen that can cause cheese lymphadenitis in goats. In order to obtain detailed information about the pathogenesis and host immune response of goats infected with C.pseudotuberculosis, we used tandem mass tag (TMT)-labeling proteomic analysis to detect differentially expressed proteins (DEPs) in dairy goats infected with C.pseudotuberculosis, and confirmed the altered proteins with western blot. A total of 6611 trusted proteins were identified, and 126 proteins were differentially abundant. Gene ontology (GO) analysis showed that all DEPs were annotated as biological processes, cell composition, and molecular functions. Biological processes mainly involve acute inflammation and immune response; cell components mainly involve extracellular areas and high-density lipoprotein particles; molecular functions are mainly antigen binding, ferric iron binding, and iron ion binding. KEGG analysis showed that a total of 102 pathways were significantly enriched, mainly lysosomes, phagosomes, and mineral absorption pathways. Our findings provided the relevant knowledge of spleen protein levels in goats infected with C.pseudotuberculosis and revealed the complex molecular pathways and immune response mechanisms in the process of C.pseudotuberculosis infection. SIGNIFICANCE: C.pseudotuberculosis is the most fatal infectious disease in dairy goats, causing huge economic losses. However, the molecular pathways and immune response mechanisms of C.pseudotuberculosis infection in goats remain unclear. Therefore, we conducted a comparative quantitative proteomics study on dairy goats infected with C.pseudotuberculosis. The results provide a basis for better understanding the complexity of C.pseudotuberculosis infection, reveal the complex molecular pathways and immune response mechanisms in C.pseudotuberculosis infection, and provide some clues for identifying potential therapeutic targets. This is the first report to show that C.pseudotuberculosis infection in dairy goats can disrupt the immune response mechanism and lead to massive immune cell death. The study provided new findings on the interaction between C.pseudotuberculosis and the host.
Collapse
|
7
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|