1
|
Wang Y, Meng S, Li D, Liu S, Li L, Wu L. Dietary chlorogenic acid supplementation protects against lipopolysaccharide-induced oxidative stress, inflammation and apoptosis in intestine of amur ide (Leuciscus waleckii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107223. [PMID: 39740528 DOI: 10.1016/j.aquatox.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
In this study, the alleviative effects of chlorogenic acid (CGA) on oxidative stress, inflammation and apoptosis of amur ide (Leuciscus waleckii) induced by lipopolysaccharide (LPS) were evaluated. Using a 2 × 2 factorial design, amur ide were irregularity divided into 4 groups and fed two diets with 0.00 % (CK and LPS), 0.04 % CGA(CGA and LC). After 4-week feeding trial, LPS challenge was executed. Results showed that 0.04 % CGA alleviated LPS-induced intestinal barrier dysfunction by decreasing the levels of 5-HT, D-LA, ET-1 and DAO in serum, increasing ZO-1, Occludin-α, Claudin-c, Claudin-f mRNA, and ZO-1, Occludin, Claudin-1 protein expression, improving intestinal morphology. Moreover, 0.04 % CGA alleviated LPS-induced inflammation and apoptosis by up-regulating TGF-β and Bcl-2 mRNA, down-regulating NF-κBp65, TNF-α, Bax, Caspase-3, Caspase-9 mRNA and NF-κBp65, Bax, Caspase-3 protein expression. 0.04 %CGA reversed LPS-induced the reduction of GSH-PX, CAT, T-SOD and T-AOC in intestines, whereas MDA showed the opposite result. 0.04 % alleviated LPS-induced the decrease of Nrf2, HO-1, CAT, SOD mRNA and Nrf2 protein expression, the increase of Keap1 mRNA. Summary, this study suggested that 0.04 % of dietary CGA alleviated LPS-induced intestinal oxidative stress, inflammation and apoptosis of amur ide.
Collapse
Affiliation(s)
- Yintao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Sitong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Denglai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Siying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Lifang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Guo R, Zhang H, Jiang C, Niu C, Chen B, Yuan Z, Wei Y, Hua Y. The impact of Codonopsis Pilosulae and Astragalus Membranaceus extract on growth performance, immunity function, antioxidant capacity and intestinal development of weaned piglets. Front Vet Sci 2024; 11:1470158. [PMID: 39376910 PMCID: PMC11456569 DOI: 10.3389/fvets.2024.1470158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction The objective of this study was to examine the impact of Codonopsis pilosula and Astragalus membranaceus extract (CA) on the growth performance, diarrhea rate, immune function, antioxidant capacity, gut microbiota, and short-chain fatty acids (SCFAs) in weaned piglets. Methods A total of forty-eight 31-day-old weaned piglets, were divided into four groups randomly based on the treatment type: control group (CON), low dose group (LCA, 0.5% CA), medium dose group (MCA, 1.0% CA), and high dose group (HCA, 1.5% CA), and were fed for a duration of 28 days. On the morning of the 1st and 29th day, the piglets were assessed by weighing them on an empty stomach, recording their daily feed intake and diarrhea rate. Results CA increased the average daily weight gain and reduced F/G without significant differences, and the diarrhea rate was reduced in the LCA and MCA groups. Furthermore, the levels of T-AOC, SOD, GSH-Px, and MDA were increased. The levels of T-AOC in the LCA group and the MCA group, SOD in the MCA group, and GSH-Px in the HCA group were significantly higher compared with the CON group (p < 0.05). Additionally, CA significantly increased IgM, IgG, and IgA levels (p < 0.05). The results of gut microbiota analysis showed that the bacterial population and diversity of faeces were changed with the addition of CA to basal diets. CA increased the abundance of the beneficial bacterial Firmicutes and Lactobacillus. Additionally, Compared with the CON group, CA significantly increased the SCFAs content of weaned piglets (p < 0.05). Discussion CA can alleviate oxidative stress, improve immunity and antioxidant capacity, increase the abundance of beneficial bacteria, and the content of SCFAs for improving the intestinal barrier of piglets, thus promoting growth and reducing diarrhea rate in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Zhou T, Long D, Zhou M, Hu X, Wang Y, Wang X. Pickle water ameliorates castor oil-induced diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. Front Nutr 2024; 11:1455091. [PMID: 39328466 PMCID: PMC11424515 DOI: 10.3389/fnut.2024.1455091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Diarrhea is a common clinical condition that can potentially be fatal. Current treatment options often have side effects, such as constipation and vomiting, and there remains a need for more effective therapies. Pickled vegetables, a famous traditional food in China, have been suggested in clinical studies to alleviate diarrhea in children, particularly through the use of pickle water (PW). However, the pharmacological effects and mechanisms of PW on intestinal health remain unclear. This study aimed to explore the protective effects of PW on castor oil-induced diarrhea in ICR mice and to investigate its potential mechanisms. Methods To evaluate the antidiarrheal effects of PW, we used a castor oil-induced diarrhea model in ICR mice. Various indices were measured to assess the severity of diarrhea. After euthanizing the mice, oxidative stress markers in the ileum were assessed using biochemical methods, and the expression of tight junction-related proteins in the ileum was analyzed using Western blot. Additionally, 16S rRNA high-throughput sequencing was used to evaluate the diversity and composition of the intestinal flora. Results The results showed that PW supplementation reduced body weight without significantly affecting organ index and liver function in the castor oil-induced diarrhea mice. PW also effectively reduced the dilution rate, diarrhea index, average loose stool grade, propelling distance of carbon powder, and intestinal propulsive rate while improving the pathological abnormality in the ileum. Furthermore, PW enhanced the activities of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and catalase (CAT) while reducing malonaldehyde (MDA) levels. PW also increased the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin in the ileum. Additionally, the analysis of 16S rDNA revealed that PW increased both α and β diversity, improved the composition of the intestinal flora, and restored it to a normal level. Discussion Collectively, dietary PW administration ameliorates Castor oil-induced diarrhea by restoring tight junctions between intestinal mucosal cells, suppressing oxidative stress, and regulating the composition of intestinal flora. These findings suggest that PW may be a promising strategy for managing diarrhea.
Collapse
Affiliation(s)
- Tian Zhou
- The Affiliated Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Maoting Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianghong Hu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yu Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xing Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Li Z, Luo Z, Hu D. Assessing Fecal Microbial Diversity and Hormone Levels as Indicators of Gastrointestinal Health in Reintroduced Przewalski's Horses ( Equus ferus przewalskii). Animals (Basel) 2024; 14:2616. [PMID: 39272401 PMCID: PMC11393964 DOI: 10.3390/ani14172616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/15/2024] Open
Abstract
Diarrhea serves as a vital health indicator for assessing wildlife populations post-reintroduction. Upon release into the wild, wild animals undergo adaptation to diverse habitats and dietary patterns. While such changes prompt adaptive responses in the fecal microbiota, they also render these animals susceptible to gastrointestinal diseases, particularly diarrhea. This study investigates variations in fecal microorganisms and hormone levels between diarrhea-afflicted and healthy Przewalski's horses. The results demonstrate a significant reduction in the alpha diversity of the fecal bacterial community among diarrheal Przewalski's horses, accompanied by notable alterations in taxonomic composition. Firmicutes, Proteobacteria, and Bacteroidetes emerge as dominant phyla across all fecal samples, irrespective of health status. However, discernible differences in fecal bacterial abundance are observed between healthy and diarrhea-stricken individuals at the genus level, specifically, a diminished relative abundance of Pseudobutyrivibrio is observed. The majority of the bacteria that facilitate the synthesis of short-chain fatty acids, Christensenellaceae_R_7_group (Christensenellaceae), NK4A214_group (Ruminococcus), Lachnospiraceae_XPB1014_group (Lachnospiraceae), [Eubacterium]_coprostanoligenes_group (Eubacterium), Rikenellaceae_RC9_gut_group, Lachnospiraceae_AC2044_group (Lachnospiraceae), and Prevotellaceae_UcG_001 (Prevotella) are noted in diarrhea-affected Przewalski's horses, while Erysipelotrichaceae, Phoenicibacter, Candidatus_Saccharimonas (Salmonella), and Mogibacterium are present in significantly increased amounts. Moreover, levels of immunoglobulin IgA and cortisol are significantly elevated in the diarrhea group compared with the non-diarrhea group. Overall, this study underscores substantial shifts in fecal bacterial diversity, abundance, and hormone levels in Przewalski's horses during episodes of diarrhea.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Zhengwei Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
5
|
Li J, Cao L, Ji J, Shen M, Gao J. Modulation of Human Gut Microbiota In Vitro by Inulin-Type Fructan from Codonopsis pilosula Roots. Indian J Microbiol 2024; 64:520-528. [PMID: 39010985 PMCID: PMC11246320 DOI: 10.1007/s12088-023-01185-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Inulin-type fructan (ITF) defined as a polydisperse carbohydrate consisting mainly of β-(2-1) fructosyl-fructose links exerts potential prebiotics properties by selectively stimulating the growth of Bifidobacterium and Lactobacillus. This study reported the modulation of human gut microbiota in vitro by ITF from Codonopsis pilosula roots using 16S ribosomal RNA gene sequencing. The microbiota community structure analysis at genus levels showed that 50 mg/mL ITF significantly stimulated the growth of Prevotella and Faecalibacterium. LEfSe analysis showed that ITF at 25 and 50 mg/mL primarily increased the relative abundance of genera Parabacteroides and Alistipes (LDA Score > 4), and genera Prevotella and Faecalibacterium (LDA Score > 4) as well as Acidaminococcus, Megasphaera, Bifidobacterium and Megamonas (LDA Score > 3.5), respectively. Meanwhile, ITF at 25 and 50 mg/mL exhibited the effects of lowering pH values of samples after 24 h fermentation (p < 0.05). The results indicated that ITF likely has potential in stimulating the growth of Prevotella and Faecalibacterium as well as Bifidobacterium of human gut microbiota.
Collapse
Affiliation(s)
- Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Lingya Cao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Jiaojiao Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Mingyue Shen
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| |
Collapse
|
6
|
Luo R, Guan A, Ma B, Gao Y, Peng Y, He Y, Xu Q, Li K, Zhong Y, Luo R, Cao R, Jin H, Lin Y, Shang P. Developmental Dynamics of the Gut Virome in Tibetan Pigs at High Altitude: A Metagenomic Perspective across Age Groups. Viruses 2024; 16:606. [PMID: 38675947 PMCID: PMC11054254 DOI: 10.3390/v16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Kexin Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Yanan Zhong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Ruibing Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yan Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| |
Collapse
|
7
|
Zhao H, Mo Q, Kulyar MFEA, Guan J, Zhang X, Luo X, Li J. Metagenomic Analysis Reveals A Gut Microbiota Structure and Function Alteration between Healthy and Diarrheic Juvenile Yaks. Animals (Basel) 2024; 14:1181. [PMID: 38672329 PMCID: PMC11047321 DOI: 10.3390/ani14081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Diarrhea-induced mortality among juvenile yaks is highly prevalent in the pastoral areas of the Qinghai-Tibet plateau. Although numerous diseases have been linked to the gut microbial community, little is known about how diarrhea affects the gut microbiota in yaks. In this work, we investigated and compared changes in the gut microbiota of juvenile yaks with diarrhea. The results demonstrated a considerable drop in the alpha diversity of the gut microbiota in diarrheic yaks, accompanied by Eysipelatoclostridium, Parabacteroides, and Escherichia-Shigella, which significantly increased during diarrhea. Furthermore, a PICRust analysis verified the elevation of the gut-microbial metabolic pathways in diarrhea groups, including glycine, serine, and threonine metabolism, alanine, aspartate, oxidative phosphorylation, glutamate metabolism, antibiotic biosynthesis, and secondary metabolite biosynthesis. Taken together, our study showed that the harmful bacteria increased, and beneficial bacteria decreased significantly in the gut microbiota of yaks with diarrhea. Moreover, these results also indicated that the dysbiosis of the gut microbiota may be a significant driving factor of diarrhea in yaks.
Collapse
Affiliation(s)
- Hongwen Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| | | | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| |
Collapse
|
8
|
Cheng B, Huang M, Zhou T, Deng Q, Teketay Wassie, Wu T, Wu X. Garlic essential oil supplementation modulates colonic microbiota compositions and regulates immune response in weaned piglets. Heliyon 2023; 9:e18729. [PMID: 37554781 PMCID: PMC10404742 DOI: 10.1016/j.heliyon.2023.e18729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The objective of this study was to investigate the colonic microbiome compositions and immune response and reveal their correlations in weaned piglets fed with garlic essential oil (GEO). Twelve 21-day-old crossbred piglets with the same parity and similar weight (BW = 7.07 ± 0.37 Kg) were randomly divided into control and experimental groups based on BW and sex, which fed either a basal diet (CON group), or a basal diet supplemented with 1.5 g/kg GEO (GEO group). UHPLC-QE-MS showed the main component of GEO were belonged to carbohydrates, organic acid, flavonoids, phenylpropanoids and terpenoids. GEO decreased serum IL-1β, IL-8 content and the down-regulated mRNA expression of IFN-γ, TLR2 in jejunal mucosa but increased serum IgG, IL-4 content and up-regulated the mRNA expression of IL-4, IL-1β, TNF-α in ileal mucosa. What's more, the metagenomic analysis demonstrated that GEO increased the abundance of Bacteroidetes, Euryarchaeota and Spirochaetes, while decreased the abundance of Firmicutes and Actinobacteria at Phylum level and Selenomonas_boris, Selenomonadaceae_bacterium_DSM_108025, Clostridiales_bacterium and Phascolarctobacterium_succinatutens at species level. Notably, the main function pathway of virulence factor (VFDB) enriched in GEO group were Fibronection-binding protein, Zn++ metallophrotease and Capsular polysaccharide, while the main function pathway of VFDB enriched in CON group were heme biosynthesis, Lap and FeoAB. Spearman correlation analysis indicated the Spirochaetes had a positive association with IL-6 and IL-4. Acinobacteria was positively correlated with IL-1β, while negative with the IL-6; In addition, Euryarchaeota had a positive correlation with IL-4, but a negative correlation with IL-1β; Tenericutes was negative with IL-8; Phascolarcolarctobacterium_succinatutens and was negative with IL-6; Ruminococcaceae_bacterium was negative with TNF-α. While Selenomonadaceae_bacterium_DSM_108025 had a positive correlation with IL-8. In conclusion, our results uncovered that immune regulation effects of GEO may be associated with the microbiome compositions in response to GEO.
Collapse
Affiliation(s)
- Bei Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyong Huang
- Hunan Tianxiang Biotechnology Co., Ltd, Shaoyang 422000, China
| | - Tiantian Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qingqing Deng
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453004, China
| | - Teketay Wassie
- Oregon Health and Science University, School of Medicine, department of Molecular Microbiology and Immunology, Portland, OR, USA
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
9
|
Chen X, Zhang F, Li H, Liu J, Jiang Y, Ren F, Huang L, Yuan X, Li Y, Yang W, Yang C, Li S, Jiao N, Jiang S. The combination of macleaya extract and glucose oxidase improves the growth performance, antioxidant capacity, immune function and cecal microbiota of piglets. Front Vet Sci 2023; 10:1173494. [PMID: 37576836 PMCID: PMC10421655 DOI: 10.3389/fvets.2023.1173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
This study aims to investigate the effects of macleaya extract and glucose oxidase combination (MGO) on growth performance, antioxidant capacity, immune function, and cecal microbiota in piglets. A total of 120 healthy 28-day-old weaned piglets were randomly divided into two treatments of six replicates. Piglets were either received a basal diet or a basal diet supplemented with 250 mg/kg MGO (2 g/kg sanguinarine, 1 g/kg chelerythrine, and 1 × 106 U/kg glucose oxidase). The results showed that MGO supplementation increased average daily gain (ADG) and decreased feed:gain ratio (F/G) (p < 0.05). MGO increased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and immunoglobulin G (IgG) content (p < 0.05), but decreased malondialdehyde (MDA) and interleukin 1β (IL-1β) content (p < 0.05). The jejunal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (HO-1) were increased in MGO group (p < 0.05), while that of kelch like ECH associated protein 1 (Keap1) was decreased (p < 0.05). The Firmicutes was significantly increased at phylum levels in MGO group (p < 0.05). In conclusion, 250 mg/kg MGO improved piglet growth, and regulated intestinal flora of piglets, which provided a theoretical basis for MGO as an alternative additive for antibiotics.
Collapse
Affiliation(s)
- Xing Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Huirong Li
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Jie Liu
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Yanping Jiang
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Furong Ren
- Zhongcheng Feed Technology Co., Ltd., Feicheng, Shandong, China
| | - Libo Huang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xuejun Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Weiren Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Chongwu Yang
- Ciyao Animal Husbandry Station, Ningyang, Shandong, China
| | - Shuang Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Shuzhen Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
10
|
Yang L, Cai M, Zhong L, Shi Y, Xie S, Hu Y, Zhang J. Effects of Replacing Soybean Meal Protein with Chlorella vulgaris Powder on the Growth and Intestinal Health of Grass Carp ( Ctenopharyngodon idella). Animals (Basel) 2023; 13:2274. [PMID: 37508052 PMCID: PMC10376889 DOI: 10.3390/ani13142274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorella vulgaris (C. vulgaris) powder is a novel non-grain single-cell protein with enormous potential to be a protein source. However, it is poorly studied in aquatic animals. The purpose of the present study was to explore the optimum replacement ratio of C. vulgaris powder and the influence of the substitution of soybean meal with C. vulgaris on grass carp (Ctenopharyngodon idella) in terms of growth performance, intestinal integrity and the microbial community. Five isonitrogenous and isolipidic diets were formulated by replacing 0% (SM, containing 30% soybean meal), 25% (X25), 50% (X50), 75% (X75) and 100% (X100) soybean meal with C. vulgaris. The feeding trial period lasted 8 weeks. At the end of the experimental trial, the X50 group showed higher FW, WGR and PER than the SM group (p < 0.05). The feed conversion ratio (FCR) of the X50 group was significantly lower than that of the SM group (p < 0.05). The X50 group showed the highest value of the goblet cell number, intestinal amylase and trypsin activities when compared with the SM group (p < 0.05). Replacing 50% soybean meal with C. vulgaris improved the intestinal barrier integrity, as evidenced by upregulating zo-1, zo-2 and occluding transcript (p < 0.05), and alleviated oxidative stress by an increased SOD enzymatic activity and transcript level, probably mediated through the Nrf2-keap1 signaling pathway (p < 0.05). Meanwhile, the X50 group enhanced intestinal immunity, as manifested by increased ACP and LZM activities (p < 0.05), and downregulated the tlr-4, tlr-7, tlr-8 and il-6 through the tlr pathway (p < 0.05). The functionally predicting pathways related to the nitrate respiration and nitrogen respiration were observably activated in the X50 group (p < 0.05). The X50 group improved the biological barrier, as manifested by increased Firmicutes and Rhodobacter (p < 0.05). In conclusion, dietary C. vulgaris powder could promote the growth performance of grass carp by restoring intestinal morphology, increasing digestive enzyme activities, improving antioxidant properties and immunity and optimizing the microflora structure. A C. vulgaris powder replacement of 50% soybean meal was recommended as feed for grass carp.
Collapse
Affiliation(s)
- Linlin Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Minglang Cai
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Lei Zhong
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Yong Shi
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Hu
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Junzhi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Yang Z, Wang F, Yin Y, Huang P, Jiang Q, Liu Z, Yin Y, Chen J. Dietary Litsea cubeba essential oil supplementation improves growth performance and intestinal health of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:9-18. [PMID: 36941959 PMCID: PMC10023852 DOI: 10.1016/j.aninu.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
This paper was to determine the effects of dietary Litsea cubeba essential oil (LEO) supplementation on growth performance, immune function, antioxidant level, intestinal morphology and microbial composition in weaned piglets. One hundred and ninety-two piglets (Duroc × [Large White × Landrace]) with 6.85 ± 0.22 kg mean body weight weaned at 21 d of age were randomly assigned to 4 treatment groups with 8 replicates and were fed with a basal diet (CON) or CON diet containing 100 (LLEO), 200 (MLEO) and 400 (HLEO) mg/kg LEO. The results revealed that HLEO supplementation (P < 0.05) increased the average daily gain on d 28 compared with CON. MLEO and HLEO supplementation decreased (P < 0.05) feed conversion ratio. LEO-containing diets had a lower (P < 0.05) diarrhea rate. Supplementation with HLEO increased (P < 0.05) total antioxidant capacity (T-AOC) both in the serum and liver. Meanwhile, the supplementation of MLEO and HLEO resulted in higher (P < 0.05) glutathione peroxidase (GPx) activities both in serum and liver. Supplementation of HLEO increased (P < 0.05) serum immunoglobulin A, immunoglobulin G and interleukin-10, whereas supplementation with MLEO and HLEO decreased (P < 0.05) tumor necrosis factor-α. Villus height in the duodenum or jejunum was increased (P < 0.05) in the HLEO group, and the villus height to crypt depth ratio in the jejunum was also improved (P < 0.05) in the MLEO group. The addition of LEO increased (P < 0.05) the richness and diversity of the microbial community in the cecum, which mainly increased the relative abundance of Oscillospiraceae _UCG-005, Faecalibacterium, Blautia and Coprococcus. Piglets supplemented with HLEO increased (P < 0.05) the concentration of short chain fatty acids (SCFA), including acetic acid in the cecum and propionic acid in the colon. In conclusion, these findings indicated that LEO supplementation improved growth performance and intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Peng Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhimou Liu
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, 413056, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
- Corresponding authors.
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
- Corresponding authors.
| |
Collapse
|
12
|
Cheng X, Yang J, Bi X, Yang Q, Zhou D, Zhang S, Ding L, Wang K, Hua S, Cheng Z. Molecular characteristics and pathogenicity of a Tibet-origin mutant avian leukosis virus subgroup J isolated from Tibetan chickens in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105415. [PMID: 36775048 DOI: 10.1016/j.meegid.2023.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Tibetan chicken is found in China Tibet (average altitude; ˃4500 m). However, little is known about avian leukosis virus subgroup J (ALV-J) found in Tibetan chickens. ALV-J is a typical alpharetrovirus that causes immunosuppression and myelocytomatosis and thus seriously affects the development of the poultry industry. In this study, Tibet-origin mutant ALV-J was isolated from Tibetan chickens and named RKZ-1-RKZ-5. A Myelocytomatosis outbreak occurred in a commercial Tibetan chicken farm in Shigatse of Rikaze, Tibet, China, in March 2022. About 20% of Tibetan chickens in the farm showed severe immunosuppression, and mortality increased to 5.6%. Histopathological examination showed typical myelocytomas in various tissues. Virus isolation and phylogenetic analysis demonstrated that ALV-J caused the disease. Gene-wide phylogenetic analysis showed the RKZ isolates were the original strains of the previously reported Tibetan isolates (TBC-J4 and TBC-J6) (identity; 94.5% to 94.9%). Furthermore, significant nucleotide mutations and deletions occurred in the hr1 and hr2 hypervariable regions of gp85 gene, 3'UTR, Y Box, and TATA Box of 3'LTR. Pathogenicity experiments demonstrated that the viral load, viremia, and viral shedding level were significantly higher in RKZ-1-infected chickens than in NX0101-infected chickens. Notably, RKZ-1 caused more severe cardiopulmonary damage in SPF chickens. These findings prove the origin of Tibet ALV-J and provide insights into the molecular characteristics and pathogenic ability of ALV-J in the plateau area. Therefore, this study may provide a basis for ALV-J prevention and eradication in Tibet.
Collapse
Affiliation(s)
- Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Jianhao Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Xiaoqing Bi
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Qi Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shuhan Hua
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China.
| |
Collapse
|
13
|
Cao Z, Qi M, Shang P, Zhang H, Nawaz S, Ghaffar A, Wu Q, Dong H. Characterization, estimation of virulence and drug resistance of diarrheagenic escherichia coli (DEC) isolated from Tibetan pigs. Microb Pathog 2023; 177:106046. [PMID: 36842515 DOI: 10.1016/j.micpath.2023.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
In this study, we collected feces of Tibetan piglets from Nyingchi area for isolation, culture, identification, virulence gene analysis and drug resistance analysis of Escherichia Coli. The results demonstrated a 41.3% isolation rate of Diarrheagenic Escherichia Coli from Tibetan pigs with the main phylogenetic groups: group A (68.6%) and group B2 (15.7%). Typical E.coli accounted for 76.5%. The highest detection rates of porcine virulence genes were E.coli heat-resistant enterotoxin STb (58.82%) and F107 fimbrial subunit (23.53%). The highest detection rates of virulence genes from Tibetan pigs were fimC (80.39%) and ompA (76.47%). A drug sensitivity test showed that Diarrheagenic Escherichia Coli from Tibetan pigs had high drug resistance rates to mezlocillin, doxycycline and gentamicin. This study comprehensively analyzed the species composition, virulence and drug resistance of Diarrheagenic Escherichia Coli from Tibetan pigs, which provided a clearer and more targeted idea for the prevention and treatment of yellow and white dysentery in Tibetan pigs in the future.
Collapse
Affiliation(s)
- Zhipeng Cao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Ming Qi
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
14
|
Fu L, Wang L, Liu L, Zhang L, Zhou Z, Zhou Y, Wang G, Loor JJ, Zhou P, Dong X. Effects of inoculation with active microorganisms derived from adult goats on growth performance, gut microbiota and serum metabolome in newborn lambs. Front Microbiol 2023; 14:1128271. [PMID: 36860489 PMCID: PMC9969556 DOI: 10.3389/fmicb.2023.1128271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of inoculation with adult goat ruminal fluid on growth, health, gut microbiota and serum metabolism in lambs during the first 15 days of life. Twenty four Youzhou dark newborn lambs were selected and randomly distributed across 3 treatments (n = 8/group): autoclaved goat milk inoculated with 20 mL sterilized normal saline (CON), autoclaved goat milk inoculated with 20 mL fresh ruminal fluid (RF) and autoclaved goat milk inoculated with 20 mL autoclaved ruminal fluid (ARF). Results showed that RF inoculation was more effective at promoting recovery of body weight. Compared with CON, greater serum concentrations of ALP, CHOL, HDL and LAC in the RF group suggested a better health status in lambs. The relative abundance of Akkermansia and Escherichia-Shigella in gut was lower in the RF group, whereas the relative abundance of Rikenellaceae_RC9_gut_group tended to increase. Metabolomics analysis shown that RF stimulated the metabolism of bile acids, small peptides, fatty acids and Trimethylamine-N-Oxide, which were found the correlation relationship with gut microorganisms. Overall, our study demonstrated that ruminal fluid inoculation with active microorganisms had a beneficial impact on growth, health and overall metabolism partly through modulating the gut microbial community.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liaochuan Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| |
Collapse
|
15
|
Zhang S, Guan W, Sun H, Zhao P, Wang W, Gao M, Sun X, Wang Q. Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance. BIORESOURCE TECHNOLOGY 2023; 370:128577. [PMID: 36603750 DOI: 10.1016/j.biortech.2023.128577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell-assisted thermophilic anaerobic digestion (MEC-TAD) is a promising method to improve anaerobic co-digestion efficiency; however, its application is restricted by high energy consumption. To improve the energy use efficiency of MEC-TAD, this study investigated the effect of different intermittent energization strategies on thermophilic co-digestion performance. Results revealed that an 18 h-ON/6h-OFF energization schedule resulted in the fastest electron transfer rate and the highest methane yield (364.3 mL/g VS). Mechanistic analysis revealed that 18 h-ON/6h-OFF resulted in the enrichment of electroactive microorganisms and increased abundance of enzyme-coding genes associated with energy metabolism (ntp, nuo, atp), electron transfer (pilA, nfrA2, ssuE), and the hydrogenotrophic methanogenic pathway. Finally, energy balance analysis revealed that 18 h-ON/6h-OFF had the highest net energy benefit (2.52 kJ) and energy conversion efficiency (110.76 %). Therefore, intermittent energization of MEC-TAD using an 18 h-ON/6h-OFF schedule can provide improved performance and more energy savings.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weijie Guan
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanqing Wang
- Tianjin College, University of Science and Technology Beijing, Tianjin 301811, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin 301811, China.
| |
Collapse
|
16
|
Highland adaptation of birds on the Qinghai-Tibet Plateau via gut microbiota. Appl Microbiol Biotechnol 2022; 106:6701-6711. [PMID: 36097173 DOI: 10.1007/s00253-022-12171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Highland birds evolve multiple adaptive abilities to cope with the harsh environments; however, how they adapt to the high-altitude habitats via the gut microbiota remains understudied. Here we integrated evidences from comparative analysis of gut microbiota to explore the adaptive mechanism of black-necked crane, a typical highland bird in the Qinghai-Tibet Plateau. Firstly, the gut microbiota diversity and function was compared among seven crane species (one high-altitude species and six low-altitude species), and then among three populations of contrasting altitudes for the black-necked crane. Microbiota community diversity in black-necked crane was significantly lower than its low-altitude relatives, but higher microbiota functional diversity was observed in black-necked crane, suggesting that unique bacteria are developed and acquired due to the selection pressure of high-altitude environments. The functional microbial genes differed significantly between the low- and high-altitude black-necked cranes, indicating that altitude significantly impacted microbial communities' composition and structure. Adaptive changes in microbiota diversity and function are observed in response to high-altitude environments. These findings provide us a new insight into the adaptation mechanism to the high-altitude environment for birds via the gut microbiota. KEY POINTS: • The diversity and function of gut microbiota differed significantly between the low- and high-altitude crane species. • Black-necked crane adapts to the high-altitude environment via specific gut microbiota. • Altitude significantly impacted microbial communities' composition and structure.
Collapse
|
17
|
Wu ZL, Wei R, Tan X, Yang D, Liu D, Zhang J, Wang W. Characterization of gut microbiota dysbiosis of diarrheic adult yaks through 16S rRNA gene sequences. Front Vet Sci 2022; 9:946906. [PMID: 36157193 PMCID: PMC9500532 DOI: 10.3389/fvets.2022.946906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
The ruminant gut microbial community has a strong impact on host health and can be altered during diarrhea disease. As an indigenous breed of the Tibetan Plateau, domestic yak displays a high diarrhea rate, but little research has been done to characterize the bacterial microbial structure in diarrheic yaks. In the present study, a total of 30 adult yaks, assigned to diarrhea (case, N = 15) and healthy (control, N = 15) groups, were subjected to gut microbiota profiling using the V3–V4 regions of the 16S rRNA gene. The results showed that the gut microbiome of the case group had a significant decrease in alpha diversity. Additionally, differences in beta diversity were consistently observed for the case and control groups, indicating that the microbial community structure was changed due to diarrhea. Bacterial taxonomic analysis indicated that the Bacteroidetes, Firmicutes, and Proteobacteria were the three most dominant phyla in both groups but different in relative abundance. Especially, the proportion of Proteobacteria in the case group was increased as compared with the control group, whereas Spirochaetota and Firmicutes were significantly decreased. At the genus level, the relative abundance of Escherichia-Shigella and Prevotellaceae_UCG-003 were dramatically increased, whereas that of Treponema, p-2534-18B5_gut_group, and Prevotellaceae_UCG-001 were observably decreased with the effect of diarrhea. Furthermore, based on our linear discriminant analysis (LDA) effect size (LEfSe) results, Alistipes, Solibacillus, Bacteroides, Prevotellaceae_UCG_003, and Bacillus were significantly enriched in the case group, while the other five genera, such as Alloprevotella, RF39, Muribaculaceae, Treponema, and Enterococcus, were the most preponderant in the control group. In conclusion, alterations in gut microbiota community composition were associated with yak diarrhea, differentially represented bacterial species enriched in case animals providing a theoretical basis for establishing a prevention and treatment system for yak diarrhea.
Collapse
Affiliation(s)
- Zhou-Lin Wu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ranlei Wei
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Tan
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding, China
| | - Dayu Liu
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Wei Wang
| |
Collapse
|
18
|
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. Int J Mol Sci 2022; 23:ijms231810291. [PMID: 36142214 PMCID: PMC9499586 DOI: 10.3390/ijms231810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) serve as alternative candidates for antibiotics and have attracted the attention of a wide range of industries for various purposes, including the prevention and treatment of piglet diarrhea in the swine industry. Escherichia coli, Salmonella, and Clostridium perfringens are the most common pathogens causing piglet diarrhea. In this study, the antimicrobial peptide gloverin2 (BMGlv2), derived from Bombyx mandarina, was explored to determine the efficient prevention effect on bacterial piglet diarrhea. BMGlv2 was heterologously expressed in Trichoderma reesei Tu6, and its antimicrobial properties against the three bacteria were characterized. The results showed that the minimum inhibitory concentrations of the peptide against E. coli ATCC 25922, S. derby ATCC 13076, and C. perfringens CVCC 2032 were 43.75, 43.75, and 21.86 μg/mL, respectively. The antimicrobial activity of BMGlv2 was not severely affected by high temperature, salt ions, and digestive enzymes. It had low hemolytic activity against rabbit red blood cells, indicating its safety for use as a feed additive. Furthermore, the measurements of the leakage of bacterial cell contents and scanning electron microscopy of C. perfringens CVCC 2032 indicated that BMGlv2 exerted antimicrobial activity by destroying the cell membrane. Overall, this study showed the heterologous expression of the antimicrobial peptide BMGlv2 in T. reesei and verified its antimicrobial properties against three common pathogenic bacteria associated with piglet diarrhea, which can provide a reference for the applications of AMPs as an alternative product in industrial agriculture.
Collapse
|
19
|
Ma S, Shu X, Wang WX. Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155457. [PMID: 35469859 DOI: 10.1016/j.scitotenv.2022.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The diversity and adjustability of metal-organic complex enhance the function of metals and promote the burgeoning fields of chemical biology. In the present study, we chose two marine fish to explore the effects of a dihydromyricetin (DMY)-Zn(II) complex on the intestinal microbiome composition and liver biological function using high-throughput sequencing technology. Two economic fish species commonly found in Southern China (golden pompano Trachinotus ovatus and pearl gentian grouper ♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) were exposed to dietary DMY-Zn complex for 4-week. Our study found that DMY-Zn performed a vital function on the improved anti-oxidative ability of both fish species. The Zn complex improved the stability of microbial community structure of the golden pompano by enhancing the α-diversity, but its impacts on the composition and diversity of intestine microorganisms of grouper were insignificant. BugBase results showed that the intestine microbiota following DMY-Zn exposure contained a lower abundance of potentially pathogenic bacteria and higher abundance of aerobic bacteria. Intestine health and utilization of carbohydrates were improved in the golden pompano, and unclassified bacteria were significantly enriched in the grouper. Liver transcriptome indicated that DMY-Zn affected the oxidative phosphorylation process (OXPHOS). Specifically, the OXPHOS process (map00190) was activated by promoting the glucose uptake (map04251, map04010) in golden pompano and lipid metabolism (map00071, map00140, map00062 and map00564) in grouper. Such difference in the responses of intestine microbiome and liver metabolism may be possibly explained by their different Zn basal requirements. Our study demonstrated that different fish species may have different responses to dietary DMY-Zn complex. The results provided a reference for the application of new additives in aquatic animal feed, and new insights into the roles of metal-organic complex in their biological impacts on fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
20
|
Zhou H, Guo Y, Liu Z, Wu H, Zhao J, Cao Z, Zhang H, Shang H. Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens. Int J Biol Macromol 2022; 215:45-56. [PMID: 35718145 DOI: 10.1016/j.ijbiomac.2022.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022]
Abstract
Effects of dietary supplementation of comfrey polysaccharides (CPs) on production performance, egg quality, and microbial composition of cecum in laying hens were evaluated. A total of 240 laying hens were allocated into 4 groups with 6 replicates per group. The laying hens were fed diets containing CPs at levels of 0, 0.5, 1.0, and 1.5 %, respectively. The results showed that the egg production rate increased by 5.97 %, the egg mass improved by 6.71 %, and the feed conversion rate reduced by 5.43 % in the 1.0 % supplementation group of CPs compared with those in the control group. The digestibility of ash, crude fat, and phosphorus was notably improved by the addition of CPs at 1.0 % (P < 0.05). The relative abundances of Bacteroidetes at the phylum level, Bacteroidaceae, Rikenellaceae, and Prevotellaceae at the family level were increased by CPs (P < 0.05). The relative abundances of Bacteroides, Megamonas, Rikenellaceae_RC9_gut_group, [Ruminococcus]_torques_group, Methanobrevibacter, Desulfovibrio, Romboutsia, Alistipes, and Intestinimonas at the genus level were increased by CPs (P < 0.05). Dietary supplementation of CPs could enhance the production performance of laying hens, which might be related to the improvement of nutrient digestibility and microbial community modulations in the cecum. Therefore, CPs have potential application value as prebiotics in laying hens.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Zihang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Liu J, Wang X, Zhang W, Kulyar MFEA, Ullah K, Han Z, Qin J, Bi C, Wang Y, Li K. Comparative analysis of gut microbiota in healthy and diarrheic yaks. Microb Cell Fact 2022; 21:111. [PMID: 35659293 PMCID: PMC9164553 DOI: 10.1186/s12934-022-01836-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Yak (Bos grunniens) mainly inhabiting Tibet Plateau, displayed a high incidence of diarrhea due to harsh living environment and nutritional deficit. Gut microbial community has been reported to be closely related to many diseases including diabetes, obesity and inflammatory bowel disease, but information regarding diarrheic influence on gut microbiota in yaks remains scarce. Here, this study was performed to investigate the gut bacterial and fungal alternations of diarrheic yaks. RESULTS Results revealed that the gut bacterial and fungal communities of diarrheic yaks showed a distinct decline in alpha diversity, accompanied by significant shifts in taxonomic compositions. Specifically, diarrhea caused a distinct increase in the relative abundance of 1 phylum and 8 genera as well as a distinct decrease in 3 phyla and 30 genera. Fungal taxonomic analysis indicated that the relative richness of 1 phylum and 2 genera dramatically increased, whereas the relative richness of 2 phylum and 43 genera significantly decreased during diarrhea. Surprisingly, 2 bacterial genera and 5 fungal genera even cannot be detected in the gut microbiota of diarrheic yaks. CONCLUSIONS In summary, this study indicated that the gut bacterial and fungal compositions and diversities of yaks altered significantly during diarrhea. Moreover, these findings also contribute to understanding the gut microbial composition and diversity of yaks and developing strategies to alleviate and prevent diarrhea from gut microbial perspective.
Collapse
Affiliation(s)
- JunJun Liu
- College of Veterinary Medicine/Traditional Chinese Veterinary Medicine, Hebei Agriculture University, Baoding, 071001, People's Republic of China
| | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi, Shandong, 276005, People's Republic of China
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi, Shandong, 276005, People's Republic of China
| | - Jianhua Qin
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi, Shandong, 276005, People's Republic of China
| | - Chongliang Bi
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi, Shandong, 276005, People's Republic of China.
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
22
|
Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms 2022; 10:microorganisms10051020. [PMID: 35630460 PMCID: PMC9144108 DOI: 10.3390/microorganisms10051020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Collapse
|