1
|
Golpasand T, Keshvari M, Behzadi P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol 2024; 24:344. [PMID: 39271999 PMCID: PMC11401301 DOI: 10.1186/s12866-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.
Collapse
Affiliation(s)
- Taha Golpasand
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Mohammad Keshvari
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| |
Collapse
|
2
|
Whelan S, Bottacini F, Buttimer C, Finn K, Lucey B. Whole genome sequencing of uropathogenic E. coli from Ireland reveals diverse resistance mechanisms and strong correlation with phenotypic (EUCAST) susceptibility testing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 121:105600. [PMID: 38692501 DOI: 10.1016/j.meegid.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) pose a global health concern. Resistance mechanisms, including genetic mutations in antimicrobial target genes, efflux pumps, and drug deactivating enzymes, hinder clinical treatment. These resistance factors often spread through mobile genetic elements. Molecular techniques like whole genome sequencing (WGS), multilocus sequence typing (MLST), and phylotyping help decode bacterial genomes and categorise resistance genes. In this study, we analysed 57 UPEC isolates from different UTI patients following EUCAST guidelines. A selection of 17 representative strains underwent WGS, phylotyping, MLST, and comparative analysis to connect laboratory susceptibility data with predictive genomics based on key resistance genes and chromosomal mutations in antimicrobial targets. Trimethoprim resistance consistently correlated with dfr genes, with six different alleles detected among the isolates. These dfr genes often coexisted with class 1 integrons, with the most common gene cassette combining dfr and aadA. Furthermore, 52.9% of isolates harboured the blaTem-1 gene, rendering resistance to ampicillin and amoxicillin. Ciprofloxacin-resistant strains exhibited mutations in GyrA, GyrB and ParC, plasmid-mediated quinolone resistance genes (qnrb10), and aac(6')-Ib-cr5. Nitrofurantoin resistance in one isolate stemmed from a four amino acid deletion in NfsB. These findings illustrate the varied strategies employed by UPEC to resist antibiotics and the correlation between clinical susceptibility testing and molecular determinants. As molecular testing gains prominence in clinical applications, understanding key resistance determinants becomes crucial for accurate susceptibility testing and guiding effective antimicrobial therapy.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, Galway, Ireland.
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| |
Collapse
|
3
|
Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, Sadeghi RV, Naderifar M, Akbarizadeh MR, Soltaninejad S, Moghadam ZT, Moghadam MT, Mirzadeh F. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnol Bioeng 2024; 121:82-99. [PMID: 37881139 DOI: 10.1002/bit.28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Defending against antibiotic-resistant infections is similar to fighting a war with limited ammunition. As the new century unfolded, antibiotic resistance became a significant concern. In spite of the fact that phage treatment has been used as an effective means of fighting infections for more than a century, researchers have had to overcome many challenges of superbug bacteria by manipulating phages and producing engineered enzymes. New enzymes and phages with enhanced properties have a significant impact on the ability to fight antibiotic-resistant infections, which is considered a window of hope for the future. This review, therefore, illustrates not only the challenges caused by antibiotic resistance and superbug bacteria but also the engineered enzymes and phages that are being developed to solve these issues. Our study found that engineered phages, phage proteins, and enzymes can be effective in treating superbug bacteria and destroying the biofilm caused by them. Combining these engineered compounds with other antimicrobial substances can increase their effectiveness against antibiotic-resistant bacteria. Therefore, engineered phages, proteins, and enzymes can be used as a substitute for antibiotics or in combination with antibiotics to treat patients with superbug infections in the future.
Collapse
Affiliation(s)
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Malekian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Gharagheizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahin Naderifar
- School of Nursing & Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Zahra Taati Moghadam
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
4
|
Szekeres E, Baricz A, Cristea A, Levei EA, Stupar Z, Brad T, Kenesz M, Moldovan OT, Banciu HL. Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165133. [PMID: 37364839 DOI: 10.1016/j.scitotenv.2023.165133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.
Collapse
Affiliation(s)
- Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adorján Cristea
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Zamfira Stupar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Traian Brad
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Marius Kenesz
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Das Mitra S, Kumar B, Rajegowda S, Bandopadhyay S, Karunakar P, Pais R. Reverse vaccinology & immunoinformatics approach to design a multiepitope vaccine (CV3Ag-antiMRSA) against methicillin resistant Staphylococcus aureus (MRSA) - a pathogen affecting both human and animal health. J Biomol Struct Dyn 2023; 42:11792-11811. [PMID: 37798927 DOI: 10.1080/07391102.2023.2265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Infections caused by drug resistant bacteria is a silent detrimental pandemic affecting the global health care profoundly. Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen that causes serious infections in different settings (community, hospital & veterinary) whose treatment remains highly challenging due to its powerful characteristics (antibiotic resistance strategies, virulence factors). In this study, we used reverse vaccinology (RV) approach and designed an immunogenic multi epitope vaccine (CV3Ag-antiMRSA) targeting three potential antigen candidates viz., mecA encoding transpeptidase (PBP2a) protein responsible for conferring methicillin resistance and two virulence determinants - hlgA encoding gamma-hemolysin component A (a pore forming toxin) and isdB encoding iron regulated surface determinant B (heme transport component that allows S. aureus to scavenge iron from host hemoglobin and myoglobin). We employed an array of immunoinformatic tools/server to identify and use immunogenic epitopes (B cell and MHC class) to develop the chimeric subunit vaccine V4 (CV3Ag-antiMRSA) with immune modulating adjuvant and linkers. Based on different parameters, the vaccine construct V4 (CV3Ag-antiMRSA) was determined to be suitable vaccine (antigenic and non-allergen). Molecular docking and simulation of CV3Ag-antiMRSA with Toll Like Receptor (TLR2) predicted its immuno-stimulating potential. Finally, in silico cloning of CV3Ag-antiMRSA construct into pet28a and pet30 vector displayed its feasibility for the heterologous expression in the E. coli expression system. This vaccine candidate (CV3Ag-antiMRSA) designed based on the MRSA genomes obtained from both animal and human hosts can be experimentally validated and thereby contribute to vaccine development to impart protection to both animal and human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susweta Das Mitra
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Bharat Kumar
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sushmitha Rajegowda
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bangalore, Karnataka, India
| | - Roshan Pais
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
6
|
S S, N H, Fasim A, More SS, Das Mitra S. Identification of a potential inhibitor for New Delhi metallo-β-lactamase 1 (NDM-1) from FDA approved chemical library- a drug repurposing approach to combat carbapenem resistance. J Biomol Struct Dyn 2023; 41:7700-7711. [PMID: 36165602 DOI: 10.1080/07391102.2022.2123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Superbugs producing New Delhi metallo-β-lactamase 1 (NDM-1) enzyme is a growing crisis, that is adversely affecting the global health care system. NDM-1 empowers the bacteria to inactivate entire arsenal of β-lactam antibiotics including carbapenem (the last resort antibiotic) and remains ineffective to all the available β lactamase inhibitors used in the clinics. Limited therapeutic option available for rapidly disseminating NDM-1 producing bacteria makes it imperative to identify a potential inhibitor for NDM-1 enzyme. With drug repurposing approach, in this study, we used virtual screening of available Food and Drug Administration (FDA) approved chemical library (ZINC12 database) and captured 'adapalene' (FDA drug) as a potent inhibitor candidate for NDM-1 enzyme. Active site docking with NDM-1, showed adapalene with binding energy -9.21 kcal/mol and interacting with key amino acid residues (Asp124, His122, His189, His250, Cys208) in the active site of NDM-1. Further, molecular dynamic simulation of NDM-1 docked with the adapalene at 100 ns displayed a stable conformation dynamic, with relative RMSD and RMSF in the acceptable range. Subsequently, in vitro enzyme assays using recombinant NDM-1 protein demonstrated inhibition of NDM-1 by adapalene. Further, the combination of adapalene plus meropenem (carbapenem antibiotic) showed synergistic effect against the NDM-1 producing carbapenem (meropenem) resistant clinical isolates (Escherichia coli and Klebsiella pneumoniae). Overall, our data indicated that adapalene can be a potential inhibitor candidate for NDM-1 enzyme that can contribute to the development of a suitable adjuvant to save the activity of carbapenem antibiotic against infections caused by NDM-1 positive gram-negative bacteria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shailaja S
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Harshitha N
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Aneesa Fasim
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sunil S More
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Susweta Das Mitra
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
8
|
Venkatesan M, Fruci M, Verellen LA, Skarina T, Mesa N, Flick R, Pham C, Mahadevan R, Stogios PJ, Savchenko A. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nat Commun 2023; 14:4031. [PMID: 37419898 PMCID: PMC10328974 DOI: 10.1038/s41467-023-39778-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
The sulfonamides (sulfas) are the oldest class of antibacterial drugs and inhibit the bacterial dihydropteroate synthase (DHPS, encoded by folP), through chemical mimicry of its co-substrate p-aminobenzoic acid (pABA). Resistance to sulfa drugs is mediated either by mutations in folP or acquisition of sul genes, which code for sulfa-insensitive, divergent DHPS enzymes. While the molecular basis of resistance through folP mutations is well understood, the mechanisms mediating sul-based resistance have not been investigated in detail. Here, we determine crystal structures of the most common Sul enzyme types (Sul1, Sul2 and Sul3) in multiple ligand-bound states, revealing a substantial reorganization of their pABA-interaction region relative to the corresponding region of DHPS. We use biochemical and biophysical assays, mutational analysis, and in trans complementation of E. coli ΔfolP to show that a Phe-Gly sequence enables the Sul enzymes to discriminate against sulfas while retaining pABA binding and is necessary for broad resistance to sulfonamides. Experimental evolution of E. coli results in a strain harboring a sulfa-resistant DHPS variant that carries a Phe-Gly insertion in its active site, recapitulating this molecular mechanism. We also show that Sul enzymes possess increased active site conformational dynamics relative to DHPS, which could contribute to substrate discrimination. Our results reveal the molecular foundation for Sul-mediated drug resistance and facilitate the potential development of new sulfas less prone to resistance.
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Lou Ann Verellen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
- Center for Structural Biology of Infectious Diseases (CSBID), Calgary, AB, Canada.
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
- Center for Structural Biology of Infectious Diseases (CSBID), Calgary, AB, Canada.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Oweis AO, Zeyad HN, Alshelleh SA, Alzoubi KH. Acute Kidney Injury Among Patients with Multi-Drug Resistant Infection: A Study from Jordan. J Multidiscip Healthc 2022; 15:2759-2766. [PMID: 36504497 PMCID: PMC9733443 DOI: 10.2147/jmdh.s384386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background Acute kidney injury (AKI) is a well-known complication for hospitalized patients. Sepsis and various infections play a significant role in increasing the incidence of AKI. The present study evaluated the risk for Multidrug-resistant (MDR) infections and its effect on the incidence of AKI, hospitalization, need for dialysis, and mortality. Methods In a retrospective study design, data were collected from all adult patients with a positive multi-drug resistant culture who were admitted to King Abdullah University Hospital (KAUH). Records of 436 patients were reviewed between January 2017 - December 2018 with at least one year of follow-up. Results The mean age was 57.3 years (SD± 23.1), and 58.5% were males. The most common source of positive cultures was sputum, with 50% positive cultures. The incidence of AKI was 59.2%. The most isolated microorganism was Acinetobacter baumannii (76.8%), followed by Pseudomonas aeruginosa (14.9%).On multivariate analysis, age (OR 1.1, 95% CI 1.1-1.2, P=0.001), HTN (OR 1.8, 95% CI 1.0-3.3, P=0.02), DM (OR 1.1, 95% CI 0.6-1.9, P=0.69) and the use of Foley catheter on chronic bases (OR 4.3, 95% CI 2.6-6.8, P<0.0001) were strong predictors of AKI. Among patients with AKI, 74.4% died compared to 44.4% among non-AKI patients (p<0.001). Conclusion In patients with MDR, AKI incidence, hospitalization, and mortality were high. Early detection and addressing the problem may decrease bad outcomes, and health education for reducing antibiotic abuse is needed to lower MDR.
Collapse
Affiliation(s)
- Ashraf O Oweis
- Department of Internal Medicine, Nephrology Division, Jordan University of Science and Technology, Irbid, Jordan,Correspondence: Ashraf O Oweis, Department of Internal Medicine, Nephrology division, Jordan University of Science and Technology, Irbid, Jordan, Tel +962791455505, Email
| | - Heba N Zeyad
- Department of Internal Medicine, Nephrology Division, Jordan University of Science and Technology, Irbid, Jordan
| | - Sameeha A Alshelleh
- Department of Internal Medicine, Nephrology Division, The University of Jordan, Amman, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates,Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Johnson G, Bataclan S, So M, Banerjee S, Wolfe AJ, Putonti C. Plasmids of the urinary microbiota. Access Microbiol 2022; 4:acmi000429. [PMID: 36644432 PMCID: PMC9833419 DOI: 10.1099/acmi.0.000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Studies of the last decade have identified a phylogenetically diverse community of bacteria within the urinary tract of individuals with and without urinary symptoms. Mobile genetic elements (MGEs), including plasmids and phages, within this niche have only recently begun to be explored. These MGEs can expand metabolic capacity and increase virulence, as well as confer antibiotic resistance. As such, they have the potential to contribute to urinary symptoms. While plasmids for some of the bacterial taxa found within the urinary microbiota (urobiome) have been well characterized, many urinary species are under-studied with few genomes sequenced to date. Using a two-pronged bioinformatic approach, we have conducted a comprehensive investigation of the plasmid content of urinary isolates representative of 102 species. The bioinformatic tools plasmidSPAdes and Recycler were used in tandem to identify plasmid sequences from raw short-read sequence data followed by manual curation. In total, we identified 603 high-confidence plasmid sequences in 20 different genera of the urobiome. In total, 70 % of these high-confidence plasmids exhibit sequence similarity to plasmid sequences from the gut. This observation is primarily driven by plasmids from E. coli , which is found in both anatomical niches. To confirm our bioinformatic predictions, long-read sequencing was performed for 23 of the E. coli isolates in addition to two E. coli strains that were sequenced as part of a prior study. Overall, 66.95 % of these predictions were confirmed highlighting the strengths and weaknesses of current bioinformatic tools. Future studies of the urobiome, especially concerning under-studied species in the urobiome, should employ long-read sequencing to expand the catalogue of plasmids for this niche.
Collapse
Affiliation(s)
| | - Seanna Bataclan
- Biology Program, Division of Natural Sciences, University of Guam, Mangilao, GU, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA,Department of Biology, Loyola University Chicago, Chicago, IL, USA,*Correspondence: Catherine Putonti,
| |
Collapse
|
11
|
Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. Genes (Basel) 2022; 13:genes13081397. [PMID: 36011308 PMCID: PMC9407594 DOI: 10.3390/genes13081397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.
Collapse
|
12
|
Giufrè M, Errico G, Monaco M, Del Grosso M, Sabbatucci M, Pantosti A, Cerquetti M, Pagnotta M, Marra M, Carollo M, Rossini A, Fogato E, Cesana E, Gentiloni Silverj F, Zabzuni D, Tinelli M. Whole Genome Sequencing and Molecular Analysis of Carbapenemase-Producing Escherichia coli from Intestinal Carriage in Elderly Inpatients. Microorganisms 2022; 10:microorganisms10081561. [PMID: 36013979 PMCID: PMC9413394 DOI: 10.3390/microorganisms10081561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The spread of carbapenemase-producing (CP) Enterobacterales is currently a worldwide concern, especially in the elderly. Twelve CP-E. coli isolated from rectal swabs of colonized inpatients aged ≥65 years from four hospitals in two Italian cities (Milan and Rome) were analyzed by whole genome sequencing (WGS) to obtain multi-locus sequence typing (MLST), identification of carbapenemase-encoding genes, resistome, plasmid content, and virulence genes. MLST analysis showed the presence of 10 unrelated lineages: ST410 (three isolates from three different hospitals in two cities) and ST12, ST38, ST69, ST95, ST131, ST189, ST648, ST1288, and ST1598 (one isolate each). Most isolates (9/12, 75%) contained a serine-β-lactamase gene (5 blaKPC-3, 2 blaKPC-2, and 2 blaOXA-181), while three isolates harbored a metallo-β-lactamase gene (two blaNDM-5 and one blaVIM-1). In most CP-E. coli, the presence of more than one plasmid was observed, with the predominance of IncF. Several virulence genes were detected. All isolates contained genes enhancing the bacterial fitness, such as gad and terC, and all isolates but one, fimH, encoding type 1 fimbriae. In conclusion, CP-E. coli clones colonizing elderly patients showed heterogeneous genetic backgrounds. We recommend strict surveillance to monitor and prevent the spread of successful, high-risk clones in healthcare settings.
Collapse
Affiliation(s)
- Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Correspondence:
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Sabbatucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Pagnotta
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Manuela Marra
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | - Maria Carollo
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | | | - Elena Fogato
- Golgi-Redaelli Geriatric Institute, 20146 Milan, Italy;
| | - Elisabetta Cesana
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | | | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | - Marco Tinelli
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
- Italian Society of Infectious and Tropical Diseases (SIMIT), 59100 Prato, Italy
| |
Collapse
|