1
|
Čejka T, Trnka M, Büntgen U. Sustainable cultivation of the white truffle (Tuber magnatum) requires ecological understanding. MYCORRHIZA 2023; 33:291-302. [PMID: 37462722 PMCID: PMC10752849 DOI: 10.1007/s00572-023-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/29/2023] [Indexed: 12/29/2023]
Abstract
The white truffle (Tuber magnatum Picco.; WT) is the most expensive and arguably also the most delicious species within the genus Tuber. Due to its hidden belowground life cycle, complex host symbiosis, and yet unknown distribution, cultivation of the enigmatic species has only recently been achieved at some plantations in France. A sustainable production of WTs under future climate change, however, requires a better ecological understanding of the species' natural occurrence. Here, we combine information from truffle hunters with a literature review to assess the climatic, edaphic, geographic, and symbiotic characteristics of 231 reported WT sites in southeast Europe. Our meta-study shows that 75% of the WT sites are located outside the species' most famous harvest region, the Piedmont in northern Italy. Spanning a wide geographic range from ~ 37° N in Sicily to ~ 47° N in Hungary, and elevations between sea level in the north and 1000 m asl in the south, all WT sites are characterised by mean winter temperatures > 0.4 °C and summer precipitation totals of ~ 50 mm. Often formed during past flood or landslide events, current soil conditions of the WT sites exhibit pH levels between 6.4 and 8.7, high macroporosity, and a cation exchange capacity of ~ 17 meq/100 g. At least 26 potential host species from 12 genera were reported at the WT sites, with Populus alba and Quercus cerris accounting for 23.5% of all plant species. We expect our findings to contribute to a sustainable WT industry under changing environmental and economic conditions.
Collapse
Affiliation(s)
- Tomáš Čejka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic.
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Miroslav Trnka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Ulf Büntgen
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
| |
Collapse
|
2
|
Huang L, Li Y, Yuan J, Wan S, Colinas C, He X, Shi X, Wang Y, Yu F. Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1134446. [PMID: 37123847 PMCID: PMC10130384 DOI: 10.3389/fpls.2023.1134446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and β-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.
Collapse
Affiliation(s)
- Lanlan Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jing Yuan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shanping Wan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Carlos Colinas
- Department of Crop and Forest Science, University of Lleida, Lleida, Spain
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Centre of Excellence for Soil Biology, College of Resources and Environment, and Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, Guizhou, China
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| |
Collapse
|
3
|
Arenas F, Morte A, Navarro-Ródenas A. Design and Validation of qPCR-Specific Primers for Quantification of the Marketed Terfezia claveryi and Terfezia crassiverrucosa in Soil. J Fungi (Basel) 2022; 8:1095. [PMID: 36294660 PMCID: PMC9605127 DOI: 10.3390/jof8101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Desert truffle crop is a pioneer in southeastern Spain, a region where native edible hypogeous fungi are adapted to the semiarid areas with low annual rainfall. Terfezia claveryi Chatin was the first species of desert truffle to be cultivated, and has been increasing in recent years as an alternative rainfed crop in the Iberian Peninsula. However, its behaviour in the field has yet not been investigated. For this purpose, specific primers were designed for the soil DNA quantification of both T. claveryi and Terfezia crassiverrucosa and a real-time qPCR protocol was developed, using the ITS rDNA region as a target. Moreover, a young desert truffle orchard was sampled for environmental validation. The results showed the highest efficiency for the TerclaF3/TerclaR1 primers pair, 89%, and the minimal fungal biomass that could be reliable detected was set at 4.23 µg mycelium/g soil. The spatial distribution of fungal biomass was heterogeneous, and there was not a direct relationship between the quantity of winter soil mycelium and the location/productivity of desert truffles. This protocol could be applied to tracking these species in soil and understand their mycelial dynamics in plantations and wild areas.
Collapse
Affiliation(s)
- Francisco Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Carretera de Sant Llorenç de Morunys, Km 2, 25280 Solsona, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
4
|
Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, Balestrini R, Mancuso S, De Bellis L, Vita F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front Microbiol 2022; 13:864434. [PMID: 35651491 PMCID: PMC9149314 DOI: 10.3389/fmicb.2022.864434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alice Calvo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | | | - Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.,Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Antioxidant Profile and Biosafety of White Truffle Mycelial Products Obtained by Solid-State Fermentation. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010109. [PMID: 35011340 PMCID: PMC8746469 DOI: 10.3390/molecules27010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Solid-state fermentation may produce therapeutic compounds with higher biomass or better product characteristics than those generated by submerged fermentation. The objectives of this study were to analyze the antioxidant activities and biosafety of products obtained by white truffle (Tuber magnatum) solid-state fermentation in media with different ratios of soybean and red adlay. High levels of antioxidant components and high antioxidant activities such as DPPH radical scavenging, ferrous ion chelation, and reducing power were measured in 20 mg/mL water and ethanol extracts of the white truffle fermentation products. When the solid-state fermentation medium contained soybean and red adlay in a 1:3 ratio (S1A3), the fermentation product had more uniform antioxidant compositions and activities by principal component analysis (PCA). In addition, a 200 ppm water extract of the mycelial fermentation product was able to protect zebrafish embryos from oxidative stress induced by 5 mM hydrogen peroxide. Sprague-Dawley rats were fed the mycelial fermentation product for 90 consecutive days, revealing a no-observed-adverse-effect level (NOAEL) of 3000 mg/kg BW/day. Therefore, mycelial products obtained by white truffle solid-state fermentation can be used instead of expensive fruiting bodies as a good source of antioxidant ingredients.
Collapse
|
6
|
Leonardi P, Baroni R, Puliga F, Iotti M, Salerni E, Perini C, Zambonelli A. Co-occurrence of true truffle mycelia in Tuber magnatum fruiting sites. MYCORRHIZA 2021; 31:389-394. [PMID: 33835237 DOI: 10.1007/s00572-021-01030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Tuber magnatum (the white truffle) is the most precious species of the genus Tuber which comprises the hypogeous ectomycorrhizal species called "true truffle." Despite its high economic value, the knowledge on its ecology is scant, principally due to the difficulty to find its mycorrhizas in the soil. The possibility to detect its mycelium by DNA extracted from soil has given a new chance for studying this truffle species. In this work, the co-occurrence of other Tuber species with T. magnatum mycelium was investigated by using species-specific primers in several productive areas located in central and northern Italy. Most (82%) of the examined soil samples showed at least one other Tuber species in addition to T. magnatum. The most common was T. maculatum (72% of soil samples) followed by T. borchii, T. rufum, T. brumale, T. dryophilum, T. macrosporum, and T. melanosporum (40%, 37%, 22%, 19%, 12%, and 1% of soil samples, respectively). Tuber aestivum was never detected in T. magnatum productive patches. Analysis of species co-occurrence showed that the pairwise associations between T. dryophilum-T. brumale, T. brumale-T. borchii, and T. borchii-T. dryophilum was significant. The results suggest that Tuber mycelial network in white truffle grounds is much more extensive than the distribution of their ectomycorrhizas and competitive exclusion between different Tuber species seems to take place only for root colonization.
Collapse
Affiliation(s)
- Pamela Leonardi
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Riccardo Baroni
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Federico Puliga
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito1, 67100, L'Aquila, Italy.
| | - Elena Salerni
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Claudia Perini
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
7
|
Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Marjanović Ž, Nawaz A, Stevanović K, Saljnikov E, Maček I, Oehl F, Wubet T. Root-Associated Mycobiome Differentiate between Habitats Supporting Production of Different Truffle Species in Serbian Riparian Forests. Microorganisms 2020; 8:E1331. [PMID: 32878332 PMCID: PMC7563819 DOI: 10.3390/microorganisms8091331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Balkan lowlands bordering with the Pannonia region are inhabited by diverse riparian forests that support production of different truffle species, predominantly the most prized white truffle of Piedmont (Tuber magnatum Pico), but also other commercial species (T.macrosporum Vitt., T. aestivum Vitt.). Surprisingly, little is known about the native root-associated mycobiome (RAM) of these lowland truffle-producing forests. Therefore, in this study we aim at exploring and comparing the RAMs of three different truffle-producing forests from Kolubara river plane in Serbia. Molecular methods based on next generation sequencing (NGS) were used to evaluate the diversity of root-associated fungal communities and to elucidate the influence of environmental factors on their differentiation. To our knowledge, this is the first study from such habitats with a particular focus on comparative analysis of the RAM in different truffle-producing habitats using a high-throughput sequencing approach. Our results indicated that the alpha diversity of investigated fungal communities was not significantly different between different truffle-producing forests and within a specific forest type, while the seasonal differences in the alpha diversity were only observed in the white truffle-producing forests. Taxonomic profiling at phylum level indicated the dominance of fungal OTUs belonging to phylum Ascomycota and Basidiomycota, with very minor presence of other phyla. Distinct community structures of root-associated mycobiomes were observed for white, mixed, and black truffle-producing forests. The core mycobiome analysis indicated a fair share of fungal genera present exclusively in white and black truffle-producing forest, while the core genera of mixed truffle-producing forests were shared with both white and black truffle-producing forests. The majority of detected fungal OTUs in all three forest types were symbiotrophs, with ectomycorrhizal fungi being a dominant functional guild. Apart from assumed vegetation factor, differentiation of fungal communities was driven by factors connected to the distance from the river and exposure to fluvial activities, soil age, structure, and pH. Overall, Pannonian riparian forests appear to host diverse root-associated fungal communities that are strongly shaped by variation in soil conditions.
Collapse
Affiliation(s)
- Žaklina Marjanović
- Institute for Multidisciplinary Research, Belgrade University, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ali Nawaz
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
| | - Katarina Stevanović
- Faculty of Biology, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia;
| | - Elmira Saljnikov
- Soil Science Institute, Teodora Drajzera 7, 11000 Belgrade, Serbia;
| | - Irena Maček
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Müller-Thurgau-Str. 29, 8820 Wädenswil, Switzerland;
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Krajnc B, Bontempo L, Luis Araus J, Giovanetti M, Alegria C, Lauteri M, Augusti A, Atti N, Smeti S, Taous F, Amenzou NE, Podgornik M, Camin F, Reis P, Máguas C, Bučar Miklavčič M, Ogrinc N. Selective Methods to Investigate Authenticity and Geographical Origin of Mediterranean Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bor Krajnc
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Italy
| | - Jose Luis Araus
- Section of Plant Physiology, Universitat de Barcelona, Barcelona, AGROTECNIO, Lleida, Spain
| | - Manuela Giovanetti
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carla Alegria
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marco Lauteri
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Angela Augusti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Naziha Atti
- Laboratoire de Production Animale et Fourragère, Institut National de Recherche Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| | - Samir Smeti
- Laboratoire de Production Animale et Fourragère, Institut National de Recherche Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| | - Fouad Taous
- Centre National de L’énergie, Des Sciences Et Techniques Nucleaires, Rabat, Morocco
| | - Nour Eddine Amenzou
- Centre National de L’énergie, Des Sciences Et Techniques Nucleaires, Rabat, Morocco
| | - Maja Podgornik
- Science and Research Centre Koper, Institute for Oliveculture, Koper, Slovenia
| | - Federica Camin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Italy
| | - Pedro Reis
- Sistemas agrários e florestais e sanidade vegetal, Instituto Nacional de Investigação Agrária E Veterinária, Oeiras, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | | | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
10
|
Li X, Zhang X, Yang M, Yan L, Kang Z, Xiao Y, Tang P, Ye L, Zhang B, Zou J, Liu C. Tuber borchii Shapes the Ectomycorrhizosphere Microbial Communities of Corylus avellana. MYCOBIOLOGY 2019; 47:180-190. [PMID: 31448138 PMCID: PMC6691893 DOI: 10.1080/12298093.2019.1615297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 05/16/2023]
Abstract
In this study, eight-month-old ectomycorrhizae of Tuber borchii with Corylus avellana were synthesized to explore the influence of T. borchii colonization on the soil properties and the microbial communities associated with C. avellana during the early symbiotic stage. The results showed that the bacterial richness and diversity in the ectomycorrhizae were significantly higher than those in the control roots, whereas the fungal diversity was not changed in response to T. borchii colonization. Tuber was the dominant taxon (82.97%) in ectomycorrhizae. Some pathogenic fungi, including Ilyonectria and Podospora, and other competitive mycorrhizal fungi, such as Hymenochaete, had significantly lower abundance in the T. borchii inoculation treatment. It was found that the ectomycorrhizae of C. avellana contained some more abundant bacterial genera (e.g., Rhizobium, Pedomicrobium, Ilumatobacter, Streptomyces, and Geobacillus) and fungal genera (e.g., Trechispora and Humicola) than the control roots. The properties of rhizosphere soils were also changed by T. borchii colonization, like available nitrogen, available phosphorus and exchangeable magnesium, which indicated a feedback effect of mycorrhizal synthesis on soil properties. Overall, this work highlighted the interactions between the symbionts and the microbes present in the host, which shed light on our understanding of the ecological functions of T. borchii and facilitate its commercial cultivation.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mei Yang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Lijuan Yan
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Zongjing Kang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yujun Xiao
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Ping Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jie Zou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chengyi Liu
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
- CONTACT Chengyi Liu
| |
Collapse
|
11
|
Gryndler M, Šmilauer P, Šťovíček V, Nováková K, Hršelová H, Jansa J. Truffle biogeography-A case study revealing ecological niche separation of different Tuber species. Ecol Evol 2017; 7:4275-4288. [PMID: 28649340 PMCID: PMC5478065 DOI: 10.1002/ece3.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Ecology of hypogeic mycorrhizal fungi, such as truffles, remains largely unknown, both in terms of their geographical distribution and their environmental niches. Occurrence of true truffles (Tuber spp.) was therefore screened using specific polymerase chain reaction (PCR) assays and subsequent PCR amplicon sequencing in tree roots collected at 322 field sites across the Czech Republic. These sites spanned a wide range of climatic and soil conditions. The sampling was a priori restricted to areas thought to be suitable for Tuber spp. inasmuch as they were characterized by weakly acidic to alkaline soils, warmer climate, and with tree species previously known to host true truffles. Eight operational taxonomic units (OTUs) corresponding to Tuber aestivum, T. borchii, T. foetidum, T. rufum, T. indicum, T. huidongense, T. dryophilum, and T. oligospermum were detected. Among these, T. borchii was the OTU encountered most frequently. It was detected at nearly 19% of the sites. Soil pH was the most important predictor of Tuber spp. distribution. Tuber borchii preferred weakly acidic soils, T. foetidum and T. rufum were most abundant in neutral soils, and T. huidongense was restricted to alkaline soils. Distribution of T. aestivum was mainly dictated by climate, with its range restricted to the warmest sites. Host preferences of the individual Tuber spp. were weak compared to soil and climatic predictors, with the notable exception that T. foetidum appeared to avoid oak trees. Our results open the way to better understanding truffle ecology and, through this new knowledge, also to better-informed trufficulture.
Collapse
Affiliation(s)
- Milan Gryndler
- Faculty of SciencesJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
- Laboratory of Fungal BiologyInstitute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Petr Šmilauer
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Václav Šťovíček
- Faculty of SciencesJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
| | - Kristýna Nováková
- Faculty of SciencesJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
| | - Hana Hršelová
- Laboratory of Fungal BiologyInstitute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Jan Jansa
- Laboratory of Fungal BiologyInstitute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| |
Collapse
|
12
|
|
13
|
Tuber magnatum: The Special One. What Makes It so Different from the Other Tuber spp.? SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Iotti M, Leonardi M, Lancellotti E, Salerni E, Oddis M, Leonardi P, Perini C, Pacioni G, Zambonelli A. Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS One 2014; 9:e115921. [PMID: 25535741 PMCID: PMC4275250 DOI: 10.1371/journal.pone.0115921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/30/2014] [Indexed: 12/02/2022] Open
Abstract
Tuber magnatum produces the world's most expensive truffle. This fungus produces very rare ectomycorrhizas which are difficult or even impossible to detect in the field. A “real-time” PCR assay was recently developed to quantify and to track T. magnatum mycelium in soil. Here, this technique was used to investigate the spatial distribution of T. magnatum extra-radical mycelium in soil productive patches and its dynamic across seasons. This study was carried out in four different natural T. magnatum truffle grounds located in different Italian regions. During the fruiting seasons, the amount of T. magnatum mycelium was significantly higher around the fruiting points and decreased going farther away from them. Moreover, T. magnatum mycelium inside the productive patches underwent seasonal fluctuations. In early spring, the amount of T. magnatum mycelium was significantly higher than in summer. In summer, probably due to the hot and dry season, T. magnatum mycelium significantly decreased, whereas in autumn it increased again and was concentrated at the putative fruiting points. These results give new insights on T. magnatum ecology and are useful to plan the most appropriate sampling strategy for evaluating the management of a truffle ground.
Collapse
Affiliation(s)
- Mirco Iotti
- Department of Agricultural Sciences, Bologna University, Bologna, Italy
| | - Marco Leonardi
- Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| | | | - Elena Salerni
- Department of Life Science, Siena University, Siena, Italy
| | - Marilena Oddis
- Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| | - Pamela Leonardi
- Department of Agricultural Sciences, Bologna University, Bologna, Italy
| | - Claudia Perini
- Department of Life Science, Siena University, Siena, Italy
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| | | |
Collapse
|
15
|
Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). MYCORRHIZA 2013; 23:349-58. [PMID: 23299664 DOI: 10.1007/s00572-012-0474-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/17/2012] [Indexed: 05/09/2023]
Abstract
The ectomycorrhizal (ECM) fungal communities of four natural Tuber magnatum truffle grounds, located in different Italian regions (Abruzzo, Emilia-Romagna, Molise, and Tuscany), were studied. The main objective of this study was to characterize and compare the ECM fungal communities in the different regions and in productive (where T. magnatum ascomata were found) and nonproductive points. More than 8,000 (8,100) colonized root tips were counted in 73 soil cores, and 129 operational taxonomic units were identified using morphological and molecular methods. Although the composition of the ECM fungal communities studied varied, we were able to highlight some common characteristics. The most plentiful ECM fungal taxa belong to the Thelephoraceae and Sebacinaceae families followed by Inocybaceae and Russulaceae. Although several ectomycorrhizas belonging to Tuber genus were identified, no T. magnatum ectomycorrhizas were found. The putative ecological significance of some species is discussed.
Collapse
Affiliation(s)
- M Leonardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Benucci GMN, Bonito G, Baciarelli Falini L, Bencivenga M. Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. MYCORRHIZA 2012; 22:383-392. [PMID: 21986799 DOI: 10.1007/s00572-011-0413-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Pecan (Carya illinoinensis) is an economically important nut tree native to the Mississippi basin and cultivated worldwide. In North America, species of truffles are regularly found fruiting in productive pecan orchards and the truffle genus Tuber appears to be abundant in pecan ectomycorrhizal (EM) communities. As an initial step to determine the feasibility of co-cropping European truffle species with pecan, we evaluated whether mycorrhizae of highly esteemed European truffle species (Tuber aestivum Vittad. T. borchii and T. macrosporum) could be formed on pecan seedlings. Seedlings were inoculated with truffle spores and were grown in a greenhouse for 10 months. Levels of EM colonization were estimated visually and quantified by counting EM tips. Ectomycorrhizae were identified both morphologically and molecularly with species-specific amplification and by sequencing of the ITS region of the nuclear ribosomal DNA (nrDNA). Both T. borchii and T. aestivum spores produced well-formed ectomycorrhizae on pecan seedlings with average root colonization levels of about 62% and 42%, respectively, whereas no ectomycorrhizae of T. macrosporum were formed. The anatomy and morphology of these truffle ectomycorrhizae on pecan was characterized. The co-cropping of T. aestivum and T. borchii may hold promise as an additional stream of revenue to pecan growers, although, further studies are needed to assess whether this symbiosis is maintained after planting in the field and whether truffle production can be supported by this host species.
Collapse
|
18
|
Iotti M, Leonardi M, Oddis M, Salerni E, Baraldi E, Zambonelli A. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol 2012; 12:93. [PMID: 22672347 PMCID: PMC3438110 DOI: 10.1186/1471-2180-12-93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuber magnatum, the Italian white truffle, is the most sought-after edible ectomycorrhizal mushroom. Previous studies report the difficulties of detecting its mycorrhizas and the widespread presence of its mycelium in natural production areas, suggesting that the soil mycelium could be a good indicator to evaluate its presence in the soil. In this study a specific real-time PCR assay using TaqMan chemistry was developed to detect and quantify T. magnatum in soil. This technique was then applied to four natural T. magnatum truffières located in different regions of Italy to validate the method under different environmental conditions. RESULTS The primer/probe sets for the detection and quantification of T. magnatum were selected from the ITS rDNA regions. Their specificity was tested in silico and using qualitative PCR on DNA extracted from 25 different fungal species. The T. magnatum DNA concentration was different in the four experimental truffières and higher in the productive plots. T. magnatum mycelium was however also detected in most of the non-productive plots. Ascoma production during the three years of the study was correlated with the concentration of T. magnatum DNA. CONCLUSIONS Taken together, these results suggest that the specific real-time PCR assay perfected in this study could be an useful tool to evaluate the presence and dynamics of this precious truffle in natural and cultivated truffières.
Collapse
Affiliation(s)
- Mirco Iotti
- Dipartimento di Protezione e Valorizzazione Agroalimentare, Alma Mater Studiorum Università di Bologna, via Fanin 46, 40127, Bologna, Italy
| | - Marco Leonardi
- Dipartimento di Scienze Ambientali, Università dell’Aquila, via Vetoio, Coppito 1, 67100, L’Aquila, Italy
| | - Marilena Oddis
- Dipartimento di Scienze Ambientali, Università dell’Aquila, via Vetoio, Coppito 1, 67100, L’Aquila, Italy
| | - Elena Salerni
- Dipartimento di Scienze Ambientali “G. Sarfatti”, Università degli Studi di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Elena Baraldi
- Dipartimento di Protezione e Valorizzazione Agroalimentare, Alma Mater Studiorum Università di Bologna, via Fanin 46, 40127, Bologna, Italy
| | - Alessandra Zambonelli
- Dipartimento di Protezione e Valorizzazione Agroalimentare, Alma Mater Studiorum Università di Bologna, via Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
19
|
Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A. Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 2012; 81:547-61. [DOI: 10.1111/j.1574-6941.2012.01379.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Beatrice Belfiori
- National Research Council; Plant Genetics Institute - Perugia Division; Perugia; Italy
| | - Claudia Riccioni
- National Research Council; Plant Genetics Institute - Perugia Division; Perugia; Italy
| | - Sabrina Tempesta
- Dipartimento di Ecologia e Sviluppo sostenibile (DECOS); Università degli Studi della Tuscia; Largo dell'Università; Viterbo; Italy
| | - Marcella Pasqualetti
- Dipartimento di Ecologia e Sviluppo sostenibile (DECOS); Università degli Studi della Tuscia; Largo dell'Università; Viterbo; Italy
| | - Francesco Paolocci
- National Research Council; Plant Genetics Institute - Perugia Division; Perugia; Italy
| | - Andrea Rubini
- National Research Council; Plant Genetics Institute - Perugia Division; Perugia; Italy
| |
Collapse
|
20
|
Benucci GMN, Bonito G, Falini LB, Bencivenga M, Donnini D. Truffles, Timber, Food, and Fuel: Sustainable Approaches for Multi-cropping Truffles and Economically Important Plants. SOIL BIOLOGY 2012. [DOI: 10.1007/978-3-642-33823-6_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F. Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. THE NEW PHYTOLOGIST 2011; 189:723-735. [PMID: 20964691 DOI: 10.1111/j.1469-8137.2010.03493.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• In light of the recent finding that Tuber melanosporum, the ectomycorrhizal ascomycete that produces the most highly prized black truffles, is a heterothallic species, we monitored the spatial distribution of strains with opposite mating types (MAT) in a natural truffle ground and followed strain dynamics in artificially inoculated host plants grown under controlled conditions. • In a natural truffle ground, ectomycorrhizas (ECMs), soil samples and fruit bodies were sampled and genotyped to determine mating types. Simple sequence repeat (SSR) markers were also used to fingerprint ECMs and fruit bodies. The ECMs from nursery-inoculated host plants were analysed for mating type at 6 months and 19 months post-inoculation. • In open-field conditions, all ECMs from the same sampling site showed an identical mating type and an identical haploid genotype, based on SSR analysis. Interestingly, the gleba of fruit bodies always demonstrated the same genotype as the surrounding ECMs. Although root tips from nursery-grown plants initially developed ECMs of both mating types, a dominance of ECMs of the same MAT were found after several months. • The present study deepens our understanding of the vegetative and sexual propagation modes of T. melanosporum. These results are highly relevant for truffle cultivation.
Collapse
Affiliation(s)
- Andrea Rubini
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Beatrice Belfiori
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Claudia Riccioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Sergio Arcioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Francesco Paolocci
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| |
Collapse
|
22
|
Benucci GMN, Raggi L, Albertini E, Grebenc T, Bencivenga M, Falcinelli M, Di Massimo G. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 2011; 76:170-84. [DOI: 10.1111/j.1574-6941.2010.01039.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Barbieri E, Ceccaroli P, Saltarelli R, Guidi C, Potenza L, Basaglia M, Fontana F, Baldan E, Casella S, Ryahi O, Zambonelli A, Stocchi V. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 2010; 114:936-42. [PMID: 21036337 DOI: 10.1016/j.funbio.2010.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/27/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Diversity of nitrogen-fixing bacteria and the nitrogen-fixation activity was investigated in Tuber magnatum, the most well-known prized species of Italian white truffle. Degenerate PCR primers were applied to amplify the nitrogenase gene nifH from T. magnatum ascomata at different stages of maturation. Putative amino acid sequences revealed mainly the presence of Alphaproteobacteria belonging to Bradyrhizobium spp. and expression of nifH genes from Bradyrhizobia was detected. The nitrogenase activity evaluated by acetylene reduction assay was 0.5-7.5μmolC(2)H(4)h(-1)g(-1), comparable with early nodules of legumes associated with specific nitrogen-fixing bacteria. This is the first demonstration of nitrogenase expression gene and activity within truffle.
Collapse
Affiliation(s)
- Elena Barbieri
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iotti M, Lancellotti E, Hall I, Zambonelli A. The ectomycorrhizal community in naturalTuber borchii grounds. FEMS Microbiol Ecol 2010; 72:250-60. [DOI: 10.1111/j.1574-6941.2010.00844.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A. Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground. FEMS Microbiol Ecol 2010; 71:43-9. [PMID: 19780830 DOI: 10.1111/j.1574-6941.2009.00783.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Truffles are hypogeous ectomycorrhizal fungi. They belong to the genus Tuber and are currently considered a hot spot in fungal biology due to their ecological and economic relevance. Among all the species, Tuber magnatum is the most appreciated because of its special taste and aroma. The aim of this work was to set up a protocol to detect T. magnatum in soil and to assess its distribution in a natural truffle-ground. We used the beta-tubulin gene as a marker to identify T. magnatum in the soil. This gene allowed us to trace the distribution of the fungus over the entire truffle-ground. Tuber magnatum was found, in one case, 100 m from the productive host plant. This study highlights that T. magnatum mycelium is more widespread than can be inferred from the distribution of truffles and ectomycorrhizas. Interestingly, a new haplotype - never described from fruiting body material - was identified. The specific detection of T. magnatum in the soil will allow to unravel the ecology of this fungus, following its mycelial network. Moreover, this new tool may have practical importance in projects aimed to increase large-scale truffle production, checking for T. magnatum persistence in plantations.
Collapse
Affiliation(s)
- Elisa Zampieri
- Dipartimento di Biologia Vegetale dell'Università di Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
26
|
Zampieri E, Mello A, Bonfante P, Murat C. PCR primers specific for the genus Tuber reveal the presence of several truffle species in a truffle-ground. FEMS Microbiol Lett 2009; 297:67-72. [PMID: 19519770 DOI: 10.1111/j.1574-6968.2009.01655.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Truffles are hypogeous Ascomycete fungi belonging to the genus Tuber and forming fruiting bodies highly prized for their taste and aroma. The identification of the genus Tuber and its species is important to investigate their ecology and avoid fraud in the food market. As genus-specific primers are not available, the aims of this work were (1) to assess the usefulness of the beta-tubulin gene as a DNA barcoding region for designing Tuber genus-specific primers, (2) to test the primers on a range of fruiting bodies, representing a large part of truffle biodiversity and (3) to check their ecological usefulness, applying them to truffle-ground soil. The new primers designed on the beta-tubulin gene were specific to the Tuber genus in nested PCR. When applied to DNA from soils, they gave a positive signal for 23 of 32 soils. Phylogenetic analysis confirmed that the bands corresponded to Tuber and that at least five Tuber species were present in the truffle-ground. beta-tubulin was found to be a good barcoding region for designing Tuber genus-specific primers, detecting a high Tuber diversity in a natural environment. These primers will be useful for understanding truffle ecology and for practical needs in plantation management.
Collapse
Affiliation(s)
- Elisa Zampieri
- Dipartimento di Biologia Vegetale dell'Università di Torino, Torino, Italy
| | | | | | | |
Collapse
|
27
|
Iotti M, Amicucci A, Bonito G, Bonuso E, Stocchi V, Zambonelli A. Selection of a set of specific primers for the identification of Tuber rufum: a truffle species with high genetic variability. FEMS Microbiol Lett 2008; 277:223-31. [PMID: 18031344 DOI: 10.1111/j.1574-6968.2007.00963.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tuber rufum is a truffle widely distributed throughout Europe, which forms mycorrhizal associations with numerous species of broadleaf and coniferous trees. The possibility of T. rufum contamination in commercial truffle-infected plants makes its detection important. To facilitate the identification of T. rufum from mycorrhiza and fruitbodies, species-specific primers were designed and tested. To overcome the high intraspecific genetic variability within the internal transcribed spacer (ITS) regions of T. rufum, as demonstrated by phylogenetic analysis, two forward primers, Ru1f and Ru2f, located on the ITS1 region were designed to be used in concert with the reverse primer ITS4. Only T. rufum was amplified with this primer combination, while DNA of Tuber magnatum, Tuber brumale, Tuber maculatum, Tuber borchii, Tuber excavatum and Tuber melanosporum was not. These primers give a specific amplicon ranging between 566 and 572 bp and are able to discriminate between T. rufum, T. borchii and T. magnatum in multiplex PCR. In addition, T. rufum-specific amplicons were obtained from both spore suspensions and mycorrhiza by direct PCR. Tuber rufum mycorrhiza obtained in the greenhouse using mycelial inoculation techniques had morphological features similar to those of other species of Tuber, stressing the importance of molecular tools for their identification.
Collapse
|
28
|
Baciarelli-Falini L, Rubini A, Riccioni C, Paolocci F. Morphological and molecular analyses of ectomycorrhizal diversity in a man-made T. melanosporum plantation: description of novel truffle-like morphotypes. MYCORRHIZA 2006; 16:475-484. [PMID: 16909286 DOI: 10.1007/s00572-006-0066-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 06/29/2006] [Indexed: 05/11/2023]
Abstract
Below-ground ectomycorrhizal communities are often species-rich, and monitoring their dynamics is important to understand the conditions that promote truffle fructification. Characterization of the different ectomycorrhizas (ECM) at the species level can now be achieved by combining detailed morphological and anatomical descriptions with molecular approaches. Following this strategy, we have characterized ectomycorrhizal biodiversity in an artificial Tuber melanosporum plantation. Although the plantation was unproductive, T. melanosporum mycorrhizas were the most present and two Tuber-like mycorrhizal morphotypes, named ECMm1 and ECMm3, showing distinctive features were found. Internal transcribed spacer (ITS) phylogenetic analysis demonstrated that ECMm3 is related to the Tuber rufum/Tuber ferrugineum species complex, whereas ECMm1 shows the highest ITS similarity with Tuber scruposum and fungi-colonizing Epipactis roots. The results presented here provide more insights into genetic variability, mycorrhizal morphology, and below-ground distribution of fungi associated with artificial truffle plantations.
Collapse
Affiliation(s)
- Leonardo Baciarelli-Falini
- Department of Plant Biology and Agro-environmental and Animal Biotechnology, University of Perugia, Borgo XX Giugno, 74-06121, Perugia, Italy.
| | - Andrea Rubini
- National Research Council, Plant Genetics Institute, Perugia Division, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Claudia Riccioni
- National Research Council, Plant Genetics Institute, Perugia Division, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Francesco Paolocci
- National Research Council, Plant Genetics Institute, Perugia Division, Via Madonna Alta 130, 06128, Perugia, Italy
| |
Collapse
|
29
|
Abstract
Truffles are hypogeous fungi which live in symbiosis with plant host roots in order to accomplish their life cycle. Some species, such as Tuber magnatum Pico, the 'white truffle', and Tuber melanosporum Vittad., the 'black truffle', are highly appreciated in many countries because of their special taste and smell. The great demand for the black and white truffles, the increasing attention towards other species of local interest for the rural economy (such as T. aestivum) together with a drop in productivity, have stimulated researchers to develop projects for a better understanding of the ecology of truffles by exploiting the new approaches of environmental microbiology and molecular ecology. Specific primers have been developed to identify many morphologically similar species, the distribution of T. magnatum has been followed in a selected truffle-ground, the phylogeography of T. melanosporum and T. magnatum has been traced, and the microorganisms associated with the truffles and their habitats have been identified.
Collapse
Affiliation(s)
- Antonietta Mello
- Istituto per la Protezione delle Piante del CNR, Sezione di Torino, Torino, Italy.
| | | | | |
Collapse
|