1
|
Liu D, Garrigues S, Culleton H, McKie VA, de Vries RP. Analysis of the molecular basis for the non-amylolytic and non-proteolytic nature of Aspergillus vadensis CBS 113365. N Biotechnol 2024; 82:25-32. [PMID: 38697469 DOI: 10.1016/j.nbt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aspergillus vadensis CBS 113365, a close relative of A. niger, has been suggested as a more favourable alternative for recombinant protein production as it does not acidify the culture medium and produces very low levels of extracellular proteases. The aim of this study was to investigate the underlying cause of the non-amylolytic and non-proteolytic phenotype of A. vadensis CBS 113365. Our results demonstrate that the non-functionality of the amylolytic transcription factor AmyR in A. vadensis CBS 113365 is primarily attributed to the lack of functionality of its gene's promoter sequence. In contrast, a different mechanism is likely causing the lack of PrtT activity, which is the main transcriptional regulator of protease production. The findings presented here not only expand our understanding of the genetic basis behind the distinct characteristics of A. vadensis CBS 113365, but also underscore its potential as a favourable alternative for recombinant protein production.
Collapse
Affiliation(s)
- Dujuan Liu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Departament of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Helena Culleton
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Megazyme International Ireland, Bray, Co. Wicklow, Ireland
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9. Appl Environ Microbiol 2021; 87:e0151021. [PMID: 34524900 DOI: 10.1128/aem.01510-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 5'-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 5'- and 3'-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum. IMPORTANCE Functional genomic studies in Ganoderma have been hindered by the absence of adequate genome-engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum, targeted gene insertion and replacement have remained a serious challenge due to the low efficiency of HR in these species, although such precise genome modifications, including site mutations, site-specific integrations, and allele or promoter replacements, would be incredibly valuable. In this work, we inactivated the NHEJ repair mechanism in G. lucidum by disrupting the ku70 gene using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70-disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.
Collapse
|
3
|
Pham KD, Hakozaki Y, Takamizawa T, Yamazaki A, Yamazaki H, Mori K, Aburatani S, Tashiro K, Kuhara S, Takaku H, Shida Y, Ogasawara W. Analysis of the light regulatory mechanism in carotenoid production in Rhodosporidium toruloides NBRC 10032. Biosci Biotechnol Biochem 2021; 85:1899-1909. [PMID: 34124766 DOI: 10.1093/bbb/zbab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
Light stimulates carotenoid production in an oleaginous yeast Rhodosporidium toruloides NBRC 10032 by promoting carotenoid biosynthesis genes. These genes undergo two-step transcriptional activation. The potential light regulator, Cryptochrome DASH (CRY1), has been suggested to contribute to this mechanism. In this study, based on KU70 (a component of nonhomologous end joining (NHEJ)) disrupting background, CRY1 disruptant was constructed to clarify CRY1 function. From analysis of CRY1 disruptant, it was suggested that CRY1 has the activation role of the carotenogenic gene expression. To obtain further insights into the light response, mutants varying carotenoid production were generated. Through analysis of mutants, the existence of the control two-step gene activation was proposed. In addition, our data analysis showed the strong possibility that R. toruloides NBRC 10032 is a homo-diploid strain.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuuki Hakozaki
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Atsushi Yamazaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University, Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
4
|
Khan H, McDonald MC, Williams SJ, Solomon PS. Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biol Biotechnol 2020; 7:4. [PMID: 32257291 PMCID: PMC7110818 DOI: 10.1186/s40694-020-00094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The genome-editing tool CRISPR/Cas9 has revolutionized gene manipulation by providing an efficient method to generate targeted mutations. This technique deploys the Cas9 endonuclease and a guide RNA (sgRNA) which interact to form a Cas9-sgRNA complex that initiates gene editing through the introduction of double stranded DNA breaks. We tested the efficacy of the CRISPR/Cas9 approach as a means of facilitating a variety of reverse genetic approaches in the wheat pathogenic fungus Parastagonospora nodorum. Results Parastagonospora nodorum protoplasts were transformed with the Cas9 protein and sgRNA in the form of a preassembled ribonuclear protein (RNP) complex targeting the Tox3 effector gene. Subsequent screening of the P. nodorum transformants revealed 100% editing of those mutants screened. We further tested the efficacy of RNP complex when co-transformed with a Tox3-Homology Directed Repair cassette harbouring 1 kb of homologous flanking DNA. Subsequent screening of resulting transformants demonstrated homologous recombination efficiencies exceeding 70%. A further transformation with a Tox3-Homology Directed Repair cassette harbouring a selectable marker with 50 bp micro-homology flanks was also achieved with 25% homologous recombination efficiency. The success of these homology directed repair approaches demonstrate that CRISPR/Cas9 is amenable to other in vivo DNA manipulation approaches such as the insertion of DNA and generating point mutations. Conclusion These data highlight the significant potential that CRISPR/Cas9 has in expediting transgene-free gene knockouts in Parastagonospora nodorum and also in facilitating other gene manipulation approaches. Access to these tools will significantly decrease the time required to assess the requirement of gene for disease and to undertake functional studies to determine its role.
Collapse
Affiliation(s)
- Haseena Khan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Simon J Williams
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
5
|
Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2018; 148:127-137. [PMID: 29654806 DOI: 10.1016/j.mimet.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
6
|
Long C, Cui J, Li H, Liu J, Gan L, Zeng B, Long M. Improvement in xylooligosaccharides production by knockout of the β- xyl1 gene in Trichoderma orientalis EU7-22. 3 Biotech 2018; 8:26. [PMID: 29279819 PMCID: PMC5736498 DOI: 10.1007/s13205-017-1041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022] Open
Abstract
The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in Trichoderma orientalis EU7-22. The binary vector pUR5750G/bxl::hph was constructed to knock out the β-xyl1 gene (encoding β-xylosidases) in T. orientalis EU7-22 by homologous integration, producing the mutant strain T. orientalis Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42 IU/mL, which increased by only 0.07% compared to that of parental strain EU7-22, whereas β-xylosidase activity was 0.06 IU/mL, representing a 91.89% decrease. When xylanase (200 IU/g xylan), produced by T. orientalis EU7-22 and T. orientalis Bxyl-1, was used to hydrolyze beechwood xylan, in contrast to the parental strain, the XOs were enhanced by 83.27%, whereas xylose decreased by 45.80% after 36 h in T. orientalis Bxyl-1. Based on these results, T. orientalis Bxyl-1 has great potential for application in the production of XOs from lignocellulosic biomass.
Collapse
Affiliation(s)
- Chuannan Long
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 People’s Republic of China
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013 People’s Republic of China
| | - Jingjing Cui
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 People’s Republic of China
- College of Energy, Xiamen University, Xiamen, 361005 People’s Republic of China
- National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers Esters, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Hailong Li
- College of Energy, Xiamen University, Xiamen, 361005 People’s Republic of China
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jian Liu
- College of Energy, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Lihui Gan
- College of Energy, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 People’s Republic of China
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013 People’s Republic of China
| | - Minnan Long
- College of Energy, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
7
|
Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase. Mycopathologia 2017; 183:241-249. [PMID: 29022198 DOI: 10.1007/s11046-017-0204-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum. The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.
Collapse
|
8
|
Deletion of TpKu70 facilitates gene targeting in Talaromyces pinophilus and identification of TpAmyR involvement in amylase production. World J Microbiol Biotechnol 2017; 33:171. [PMID: 28849313 DOI: 10.1007/s11274-017-2331-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Talaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools. In this study, a putative TpKu70 encoding the Ku70 homolog involved in the classic non-homologous end-joining pathway was deleted in T. pinophilus 1-95. ΔTpKu70 displayed no apparent defect in vegetative growth and enzyme production, and presented similar sensitivity to benomyl, bleomycin, and UV, when compared with the wild-type T. pinophilus strain 1-95. Seven genes that encode putative transcription factors, including TpAmyR, were successfully knocked out in ΔTpKu70 at 61.5-100% of homologous recombination frequency, which is significantly higher than that noted in the wild-type. Interestingly, ΔTpAmyR produced approximately 20% of amylase secreted by the parent strain ΔTpKu70 in medium containing soluble starch from corn as the sole carbon source. Real-time quantitative reverse transcription PCR showed that TpAmyR positively regulated the expression of genes encoding α-amylase and glucoamylase. Thus, this study provides a useful tool for genetic analysis of T. pinophilus, and identification of a key role for the transcription factor TpAmyR in amylase production in T. pinophilus.
Collapse
|
9
|
Sidhu YS, Cairns TC, Chaudhari YK, Usher J, Talbot NJ, Studholme DJ, Csukai M, Haynes K. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:102-9. [PMID: 26092796 PMCID: PMC4502460 DOI: 10.1016/j.fgb.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We have constructed Z. tritici ku70 and ku80 null mutants. Gene targeting frequency in the ku null strains is greater than 85%. Deletion of KU70 and KU80 does not affect in vitro growth or pathogenicity. Sulfonylurea resistance was established as a new positive selection marker in Z. tritici. Ternary vectors were constructed to enable yeast recombinational cloning in Z. tritici.
The lack of techniques for rapid assembly of gene deletion vectors, paucity of selectable marker genes available for genetic manipulation and low frequency of homologous recombination are major constraints in construction of gene deletion mutants in Zymoseptoria tritici. To address these issues, we have constructed ternary vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici, which enable the single step assembly of multiple fragments via yeast recombinational cloning. The sulfonylurea resistance gene, which is a mutated allele of the Magnaporthe oryzae ILV2 gene, was established as a new dominant selectable marker for Z. tritici. To increase the frequency of homologous recombination, we have constructed Z. tritici strains deficient in the non-homologous end joining pathway of DNA double stranded break repair by inactivating the KU70 and KU80 genes. Targeted gene deletion frequency increased to more than 85% in both Z. tritici ku70 and ku80 null strains, compared to ⩽10% seen in the wild type parental strain IPO323. The in vitro growth and in planta pathogenicity of the Z. tritici ku70 and ku80 null strains were comparable to strain IPO323. Together these molecular tools add significantly to the platform available for genomic analysis through targeted gene deletion or promoter replacements and will facilitate large-scale functional characterization projects in Z. tritici.
Collapse
Affiliation(s)
- Y S Sidhu
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - T C Cairns
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Y K Chaudhari
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - J Usher
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - N J Talbot
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - D J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - M Csukai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK
| | - K Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
He Y, Liu Q, Shao Y, Chen F. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 2013; 97:4965-76. [PMID: 23546425 DOI: 10.1007/s00253-013-4851-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/25/2023]
Abstract
Normally, gene targeting by homologous recombination occurs rarely during a transformation process since non-homologous recombination is predominant in filamentous fungi. In our previous researches, the average gene replacement frequency (GRF) in Monascus ruber M7 was as low as 15 %. To develop a highly efficient gene targeting system for M. ruber M7, two M. ruber M7 null mutants of ku70 (MrΔku70) and ku80 (MrΔku80) were constructed which had no apparent defects in the development including vegetative growth, colony phenotype, microscopic morphology and spore yield compared with M. ruber M7. In addition, the production of some significant secondary metabolites such as pigments and citrinin had no differences between the two disruptants and the wild-type strain. Further results revealed that the GRFs of triA (encoding a putative acetyltransferase) were 42.2 % and 61.5 % in the MrΔku70 and MrΔku80 strains, respectively, while it was only about 20 % in M. ruber M7. Furthermore, GRFs of these two disruptants at other loci (the pigE, fmdS genes in MrΔku70 and the ku70 gene in MrΔku80) were investigated, and the results indicated that GRFs in the MrΔku70 strain and the MrΔku80 strain were doubled and tripled compared with that in M. ruber M7, respectively. Therefore, the ku70 and ku80 null mutants of M. ruber M7, especially the ku80-deleted strain, will be excellent hosts for efficient gene targeting.
Collapse
Affiliation(s)
- Yi He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: from pathology to genomics and host resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:23-43. [PMID: 22559071 DOI: 10.1146/annurev-phyto-081211-173019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stagonospora nodorum is a major necrotrophic pathogen of wheat that causes the diseases S. nodorum leaf and glume blotch. A series of tools and resources, including functional genomics, a genome sequence, proteomics and metabolomics, host-mapping populations, and a worldwide collection of isolates, have enabled the dissection of pathogenicity mechanisms. Metabolic and signaling genes required for pathogenicity have been defined. Interaction with the host is dominated by interplay of fungal effectors that induce necrosis on wheat lines carrying specific sensitivity loci. As such, the pathogen has emerged as a model for the Pleosporales group of pathogens.
Collapse
Affiliation(s)
- Richard P Oliver
- Australian Center for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia.
| | | | | | | |
Collapse
|