1
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
2
|
Naegele RP, Abdelsamad N, DeLong JA, Saito S, Xiao CL, Miles TD. Fungicide Resistance and Host Influence on Population Structure in Botrytis spp. from Specialty Crops in California. PHYTOPATHOLOGY 2022; 112:2549-2559. [PMID: 35801851 DOI: 10.1094/phyto-03-22-0070-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botrytis is an important genus of plant pathogens causing pre- and postharvest disease on diverse crops worldwide. This study evaluated Botrytis isolates collected from strawberry, blueberry, and table grape berries in California. Isolates were evaluated for resistance to eight different fungicides, and 60 amplicon markers were sequenced (neutral, species identification, and fungicide resistance associated) distributed across 15 of the 18 B. cinerea chromosomes. Fungicide resistance was common among the populations, with resistance to pyraclostrobin and boscalid being most frequent. Isolates from blueberry had resistance to the least number of fungicides, whereas isolates from strawberry had resistance to the highest number. Host and fungicide resistance-specific population structure explained 12 and 7 to 26%, respectively, of the population variability observed. Fungicide resistance was the major driver for population structure, with select fungicides explaining up to 26% and multiple fungicide resistance explaining 17% of the variability observed. Shared and unique significant single-nucleotide polymorphisms (SNPs) associated with host and fungicide (fluopyram, thiabendazole, pyraclostrobin, and fenhexamid) resistance-associated population structures were identified. Although overlap between host and fungicide resistance SNPs were detected, unique SNPs suggest that both host and fungicide resistance play an important role in Botrytis population structure.
Collapse
Affiliation(s)
- Rachel P Naegele
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Noor Abdelsamad
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Jeff A DeLong
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Seiya Saito
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Chang-Lin Xiao
- U.S. Department of Agriculture-Agricultural Research Service, 9611 S. Riverbend Ave., Parlier, CA 93648
| | - Timothy D Miles
- Michigan State University, Plant Pathology, 426 Auditorium Road, East Lansing, MI 48824
| |
Collapse
|
3
|
da Silva JJ, Iamanaka BT, Ferranti LS, Massi FP, Taniwaki MH, Puel O, Lorber S, Frisvad JC, Fungaro MHP. Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. nov. J Fungi (Basel) 2020; 6:jof6040371. [PMID: 33348541 PMCID: PMC7767288 DOI: 10.3390/jof6040371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).
Collapse
Affiliation(s)
- Josué J. da Silva
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Beatriz T. Iamanaka
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Larissa S. Ferranti
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Fernanda P. Massi
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Marta H. Taniwaki
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Maria Helena P. Fungaro
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
- Correspondence: ; Tel.: +55-4399-955-4100
| |
Collapse
|
4
|
Azevedo DMQ, Martins SDS, Guterres DC, Martins MD, Araújo L, Guimarães LMS, Alfenas AC, Furtado GQ. Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biol 2020; 124:940-957. [PMID: 33059846 DOI: 10.1016/j.funbio.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/27/2022]
Abstract
Botrytis is a necrotrophic fungal genus of great economic importance worldwide. Together, the Botrytis species are able to infect over one thousand host plant species, including dicotyledons and monocotyledons. As the identification of Botrytis species in Brazil has mostly been based only on morphological characterization and comparisons of the rDNA ITS region, which is not informative in the genus, its diversity remains unknown. Thus, in this study we determined the diversity and prevalence of Botrytis spp. in Brazil by multilocus phylogeny. Phylogenetic reconstruction of the genus was performed using the nuclear genes glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and RNA polymerase II second largest subunit (RPB2). From analyses of 56 Botrytis isolates obtained from different hosts and geographical regions in Brazil, we found that Botrytis cinerea is the most prevalent species with considerable intraspecific genetic diversity detected by nuclear genes. Two new hosts to B. cinerea and eight host never previously reported in Brazil were found. We also reported for the first time the occurrence of Botrytispseudocinerea associated with Accasellowiana (Myrtaceae). Due to the new phylogenetic positioning of Botrytispelargonii and Botrytiseucalypti, a taxonomic review of these species was suggested.
Collapse
Affiliation(s)
- Daiana M Q Azevedo
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Sarah D S Martins
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Débora C Guterres
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Mateus D Martins
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Leonardo Araújo
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, 88600-000, São Joaquim, SC, Brazil.
| | - Lúcio M S Guimarães
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Acelino C Alfenas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Gleiber Q Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
5
|
Meng L, Mestdagh H, Ameye M, Audenaert K, Höfte M, Van Labeke MC. Phenotypic Variation of Botrytis cinerea Isolates Is Influenced by Spectral Light Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:1233. [PMID: 32903526 PMCID: PMC7438557 DOI: 10.3389/fpls.2020.01233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 05/23/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, displays a high degree of phenotypic diversity. Light emitting diodes (LEDs) with specific light spectrum are increasingly used as lighting resource for plant greenhouse production. The chosen light spectrum can also have an effect on the pathogens in this production system. In this study, we investigated the phenological diversity in 15 B. cinerea isolates upon different light treatments. Daylight, darkness, and LED lights with different wavelengths (white, blue, red, blue+red) were chosen as treatments. The 15 Botrytis isolates differed in their mycelial growth rate, conidia production, and sclerotia formation. Light quality had a limited effect on growth rate. All isolates sporulated under daylight treatment, red light resulted in lower sporulation, while white, blue, and blue+red light inhibited sclerotia formation in all isolates, and sporulation in most, but not all isolates. Pathogenicity of the Botrytis isolates was studied on 2-week-old strawberry (Fragaria × ananassa 'Elsanta') leaves grown under white, blue, and red LED lights. The isolates differed in virulence on strawberry leaves, and this was positively correlated to oxalic acid production by B. cinerea in vitro. Red LED light improved leaf basal resistance to all the tested Botrytis isolates. Blue light pretreatment resulted in decreased leaf resistance to some isolates. Furthermore, we used image analysis to quantify the virulence of the different Botrytis isolates based on changes in photosynthetic performance of the strawberry leaves: chlorophyll fluorescence (Fv/Fm), chlorophyll index (ChlIdx) and anthocyanin content (modified anthocyanin reflection index, mAriIdx). Fv/Fm showed a strong negative correlation with disease severity and can be an indicator for the early detection of gray mold on strawberry leaves.
Collapse
|
6
|
A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of Botrytis cinerea. Int J Mol Sci 2020; 21:ijms21082912. [PMID: 32326350 PMCID: PMC7215688 DOI: 10.3390/ijms21082912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/23/2022] Open
Abstract
Botrytis cinerea is a pathogenic fungus that causes gray mold disease in a broad range of crops. The high intraspecific variability of B. cinerea makes control of this fungus very difficult. Here, we isolated a variant B05.10M strain from wild-type B05.10. The B05.10M strain showed serious defects in mycelial growth, spore and sclerotia production, and virulence. Using whole-genome resequencing and site-directed mutagenesis, a single nucleotide mutation in the adenylate cyclase (BAC) gene that results in an amino acid residue (from serine to proline, S1407P) was shown to be the cause of various defects in the B05.10M strain. When we further investigated the effect of S1407 on BAC function, the S1407P mutation in bac showed decreased accumulation of intracellular cyclic AMP (cAMP), and the growth defect could be partially restored by exogenous cAMP, indicating that the S1407P mutation reduced the enzyme activity of BAC. Moreover, the S1407P mutation exhibited decreased spore germination rate and infection cushion formation, and increased sensitivity to cell wall stress, which closely related to fungal development and virulence. Taken together, our study indicates that the S1407 site of bac plays an important role in vegetative growth, sclerotial formation, conidiation and virulence in B. cinerea.
Collapse
|
7
|
Comparative Methods for Molecular Determination of Host-Specificity Factors in Plant-Pathogenic Fungi. Int J Mol Sci 2018; 19:ijms19030863. [PMID: 29543717 PMCID: PMC5877724 DOI: 10.3390/ijms19030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Many plant-pathogenic fungi are highly host-specific. In most cases, host-specific interactions evolved at the time of speciation of the respective host plants. However, host jumps have occurred quite frequently, and still today the greatest threat for the emergence of new fungal diseases is the acquisition of infection capability of a new host by an existing plant pathogen. Understanding the mechanisms underlying host-switching events requires knowledge of the factors determining host-specificity. In this review, we highlight molecular methods that use a comparative approach for the identification of host-specificity factors. These cover a wide range of experimental set-ups, such as characterization of the pathosystem, genotyping of host-specific strains, comparative genomics, transcriptomics and proteomics, as well as gene prediction and functional gene validation. The methods are described and evaluated in view of their success in the identification of host-specificity factors and the understanding of their functional mechanisms. In addition, potential methods for the future identification of host-specificity factors are discussed.
Collapse
|
8
|
Polat İ, Baysal Ö, Mercati F, Gümrükcü E, Sülü G, Kitapcı A, Araniti F, Carimi F. Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. INFECTION GENETICS AND EVOLUTION 2018; 60:151-159. [PMID: 29505818 DOI: 10.1016/j.meegid.2018.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Botrytis cinerea is a polyphagous fungal pathogen causing gray mold disease. Moreover, it is one of the most destructive infections of small fruit crops such as pepper (Capsicum annnum L.). C. sativum is a species belonging to the Solanaceae family and Turkey is one of the main producers in the World. In the present work, aiming to obtain information useful for pest management, fifty B. cinerea isolates collected from Turkey and a reference isolate (B05.10) were characterized using molecular markers and fungicide resistance genes. Morphological and molecular (ITS1-ITS4) identification of B. cinerea isolates, the degree of virulence and mating types were determined. Since one or several allelic mutations in the histidine kinase (Bos1) and β-tubulin genes generally confer the resistance to fungicides, the sequences of these target genes were investigated in the selected isolates, which allowed the identification of two different haplotypes. Mating types were also determined by PCR assays using primer specific for MAT1-1 alpha gene (MAT1-1-1) and MAT1-2 HMG (MAT1-2-1) of B. cinerea. Twenty-two out of 50 isolates (44%) were MAT1-2, while 38% were MAT1-1. Interestingly, out of whole studied samples, 9 isolates (18%) were heterokaryotic or mixed colonies. In addition, cluster and population structure analyses identified five main groups and two genetic pools, respectively, underlining a good level of variability in the analysed panel. The results highlighted the presence of remarkable genetic diversity in B. cinerea isolates collected in a crucial economical area for pepper cultivation in Turkey and the data will be beneficial in view of future gray mold disease management.
Collapse
Affiliation(s)
- İlknur Polat
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Ömür Baysal
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Molecular Biology and Genetics, 48000 Muğla, Turkey.
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Palermo, Italy
| | - Emine Gümrükcü
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Görkem Sülü
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Aytül Kitapcı
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Fabrizio Araniti
- Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Palermo, Italy
| |
Collapse
|
9
|
Duan C, Li W, Zhu Z, Li D, Sun S, Wang X. Genetic differentiation and diversity of Callosobruchus chinensis collections from China. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:124-34. [PMID: 26548842 PMCID: PMC4762245 DOI: 10.1017/s0007485315000863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Callosobruchus chinensis (Linnaeus) is one of the most destructive pests of leguminous seeds. Genetic differentiation and diversity analysis of 345 C. chinensis individuals from 23 geographic populations using 20 polymorphic simple sequence repeats revealed a total of 149 alleles with an average of 7.45 alleles per locus. The average Shannon's information index was 1.015. The gene flow and genetic differentiation rate values at the 20 loci ranged from 0.201 to 1.841 and 11.0-47.2%, with averages of 0.849 and 24.4%, respectively. In the 23 geographic populations, the effective number of alleles and observed heterozygosity ranged from 1.441 to 2.218 and 0.191-0.410, respectively. Shannon's information index ranged from 0.357 to 0.949, with the highest value in Hohhot and the lowest in Rudong. In all comparisons, the fixation index (F ST ) values ranged from 0.049 to 0.441 with a total F ST value of 0.254 among the 23 C. chinensis populations, indicating a moderate level of genetic differentiation and gene flow among these populations. Analysis of molecular variance revealed that the genetic variation within populations accounted for 76.7% of the total genetic variation. The genetic similarity values between populations varied from 0.617 to 0.969, whereas genetic distances varied from 0.032 to 0.483. Using unweighted pair-group method using arithmetical averages cluster analysis, the 23 geographic collections were classified into four distinct genetic groups but most of them were clustered into a single group. The pattern of the three concentrated groups from polymerase chain reactions analysis showed a somewhat different result with cluster.
Collapse
Affiliation(s)
- C.X. Duan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Author for correspondence Tel: +86-10-8210-9609 Fax: +86-10-8210-9608 E-mail:
| | - W.C. Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Z.D. Zhu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - D.D. Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - S.L. Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - X.M. Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
10
|
Abdel Wahab H. Characterization of Egyptian <i>Botrytis cinerea</i> Isolates from Different Host Plants. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aim.2015.53017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Bardin M, Decognet V, Nicot PC. Remarkable predominance of a small number of genotypes in greenhouse populations of Botrytis cinerea. PHYTOPATHOLOGY 2014; 104:859-864. [PMID: 24521484 DOI: 10.1094/phyto-10-13-0271-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although Botrytis cinerea is known for its ability to produce high amounts of spores on diseased plants, enabling it to complete rapidly numerous developmental cycles in favorable environments, population genetics studies of this fungus indicate enormous diversity and limited clonal spread. Here, we report an exception to this situation in the settings of commercial tomato greenhouses. The genotypic characterization of 712 isolates collected from the air and from diseased plants, following the development of gray mold epidemics in four greenhouses in southern France, revealed the presence of a few predominant genotypes in a background of highly diverse populations. The comparison of genotypic profiles for isolates collected in the air or on the plants was compatible with the hypothesis of an entry in the greenhouse of substantial amounts of inoculum from the outside environment but it also highlighted the importance of secondary inoculum produced within the crop. The overall results of this work suggest that sporulation could be an important target for disease management strategies in the greenhouse.
Collapse
|
12
|
Kumari S, Tayal P, Sharma E, Kapoor R. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiol Res 2014; 169:862-72. [PMID: 24767170 DOI: 10.1016/j.micres.2014.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022]
Abstract
Seventy nine isolates of Botrytis cinerea were collected from different host plants and different locations of India and Nepal. All the isolates were identified as B. cinerea based on morphological features and were confirmed using B. cinerea specific primers. Differentiation among the isolates was assessed using morphological, genetic and biochemical approaches. To analyze morphological variability, differences in conidial size, presence or absence of sclerotia and their arrangement were observed. Genetic variability was characterized using RAPD analysis, presence or absence of transposons and mating type genes. Cluster analysis based on RAPD markers was used for defining groups on the basis of geographical region and host. The biochemical approach included determining differences in concentration of oxalic acid and activity of lytic enzymes. All the isolates were categorized into different pathogenic groups on the basis their variable reaction towards chickpea plants. Isolates with higher concentration of oxalic acid and greater activity of lytic enzymes were generally more pathogenic. Pathogenicity was also correlated to transposons. Isolates containing transposa group showed some degree of correlation with pathogenic behavior. However, isolates could not be grouped on the basis of a single approach which provides evidence of their wide diversity and high evolution potential. Sensitivity of sampled isolates was also tested against five botryticides. Most of the isolates from same region were inhibited by a particular fungicide. This feature provided interesting cues and would assist in devising novel and more effective measures for managing the disease.
Collapse
Affiliation(s)
- Sarita Kumari
- Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi 110 007, India.
| | - Pamil Tayal
- Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi 110 007, India
| | - Esha Sharma
- Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi 110 007, India
| | - Rupam Kapoor
- Applied Mycology Laboratory, Department of Botany, University of Delhi, Delhi 110 007, India
| |
Collapse
|