1
|
Csoma H, Kállai Z, Czentye K, Sipiczki M. Starmerella lactis-condensi, a yeast that has adapted to the conditions in the oenological environment. Int J Food Microbiol 2023; 401:110282. [PMID: 37329632 DOI: 10.1016/j.ijfoodmicro.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The yeast Starmerella (Candida) lactis-condensi is considered a food contaminant microorganism. The aim of our research was to determine why St. lactis-condensi could become the dominant species of Essences, the top sweet wine speciality of Tokaj wine region in Hungary. We investigated the physiological properties of these yeasts based on parameters that may influence their ability to selectively proliferate and persist during maturation in wines with very high sugar content. These include glucose and fructose, alcohol, and sulphur tolerance. Our studies have shown that St. lactis-condensi is a fructophilic yeast that is able to adapt quickly to very high sugar concentrations (up to 500 g/L) in the Essences. The high glucose concentration inhibits its growth, as well as that of the St. bacillaris (Candida zemplinina) strains tested. The type and amount of sugars in the Essences, together with the sulphur and alcohol content, influence the composition of the dominant yeast biota. Analysis of (GTG)5 microsatellite in the nuclear genome and mtDNA-RFLP studies demonstrate that a diverse population of St. lactis-condensi occurs in the Tokaj wine region, in the Essences. This yeast species is characterised by both physiological and genetic biodiversity. GC-MS analysis of Essences colonised exclusively with these yeasts showed no deterioration in quality.
Collapse
Affiliation(s)
- Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary.
| | - Zoltán Kállai
- Research Institute for Viticulture and Oenology, Tarcal; Department of Oenological Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Czentye
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Villarreal P, Villarroel CA, O'Donnell S, Agier N, Quintero-Galvis JF, Peña TA, Nespolo RF, Fischer G, Varela C, Cubillos FA. Late Pleistocene-dated divergence between South Hemisphere populations of the non-conventional yeast L. cidri. Environ Microbiol 2022; 24:5615-5629. [PMID: 35769023 DOI: 10.1111/1462-2920.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.
Collapse
Affiliation(s)
- Pablo Villarreal
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
| | - Sam O'Donnell
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Julian F Quintero-Galvis
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Tomas A Peña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Cristian Varela
- The Australian Wine Research Institute, Glen Osmond, Adelaide, South Australia, Australia.,Department of Wine and Food Science, University of Adelaide, Glen Osmond, Adelaide, South Australia, Australia
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
3
|
Reconstruction of Simplified Microbial Consortia to Modulate Sensory Quality of Kombucha Tea. Foods 2022; 11:foods11193045. [PMID: 36230121 PMCID: PMC9563716 DOI: 10.3390/foods11193045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Kombucha is a fermented tea with a long history of production and consumption. It has been gaining popularity thanks to its refreshing taste and assumed beneficial properties. The microbial community responsible for tea fermentation—acetic acid bacteria (AAB), yeasts, and lactic acid bacteria (LAB)—is mainly found embedded in an extracellular cellulosic matrix located at the liquid–air interphase. To optimize the production process and investigate the contribution of individual strains, a collection of 26 unique strains was established from an artisanal-scale kombucha production; it included 13 AAB, 12 yeasts, and one LAB. Among these, distinctive strains, namely Novacetimonas hansenii T7SS-4G1, Brettanomyces bruxellensis T7SB-5W6, and Zygosaccharomyces parabailii T7SS-4W1, were used in mono- and co-culture fermentations. The monocultures highlighted important species-specific differences in the metabolism of sugars and organic acids, while binary co-cultures demonstrated the roles played by bacteria and yeasts in the production of cellulose and typical volatile acidity. Aroma complexity and sensory perception were comparable between reconstructed (with the three strains) and native microbial consortia. This study provided a broad picture of the strains’ metabolic signatures, facilitating the standardization of kombucha production in order to obtain a product with desired characteristics by modulating strains presence or abundance.
Collapse
|
4
|
Evaluation of Different Molecular Markers for Genotyping Non-Saccharomyces Wine Yeast Species. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wine quality is determined by the particular yeast strains prevailing at various stages of fermentation. Therefore, the ability to make an easy, fast, and unambiguous discrimination of yeasts at the strain level is of great importance. Here, the tandem repeat-tRNA (TRtRNA) method with the 5GAC or ISSR-MB primer sets and random amplified polymorphic DNA (RAPD) analysis with (GTG)3, R5, and RF2 oligonucleotides were tested on various non-Saccharomyces wine yeast species. The TRtRNA-PCR employing ISSR-MB showed the highest capacity in discriminating Lachancea thermotolerans and Metschnikowia pulcherrima isolates. RAPD with RF2 was the most efficient method in resolving Starmerella bacillaris isolates, although it produced few polymorphic bands. RAPD with R5 showed the highest capacity to discriminate among the Issatchenkia orientalis, Hanseniaspora guilliermondii, and Pichia anomala isolates. RAPD with either R5 or RF2 exhibited the highest ability to discriminate among the Torulaspora delbrueckii isolates. RAPD with (GTG)3 was the most discriminating method for the H. uvarum isolates. Here we concluded that both TRtRNA-PCR and RAPD-PCR offer rapid means for typing non-Saccharomyces species. However, each method performs better for a given species when paired with a particular primer set. The present results can be useful in wine research for the fast fingerprinting of non-Saccharomyces yeasts.
Collapse
|
5
|
Genetic, Physiological, and Industrial Aspects of the Fructophilic Non-Saccharomyces Yeast Species, Starmerella bacillaris. FERMENTATION 2021. [DOI: 10.3390/fermentation7020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast species, frequently found in enological ecosystems. Peculiar aspects of the genetics and metabolism of this yeast species, as well as potential industrial applications of isolated indigenous S. bacillaris strains worldwide, have recently been explored. In this review, we summarize relevant observations from studies conducted on standard laboratory and indigenous isolated S. bacillaris strains.
Collapse
|
6
|
Unravelling the Impact of Grape Washing, SO2, and Multi-Starter Inoculation in Lab-Scale Vinification Trials of Withered Black Grapes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wine quality is strongly affected by chemical composition and microbial population of grape must, which, in turn, are influenced by several post-harvest treatments, including grape withering. Different strategies have been suggested to manage the fermenting must microbiota, as it plays a central role in the outcomes of both spontaneous and guided fermentations. This study aimed at evaluating the impact of grape washing, SO2 addition, and selected starter culture inoculation on population dynamics, fermentation kinetics, and main oenological parameters in lab-scale trials, focusing on withered grapes usually used for Amarone production. Although grape washing treatment was effective in removing heavy metals and undesirable microorganisms from grape berry surface, inoculation of multi-starter cultures impacted more fermentation rates. Further, both grape washing and starter inoculation procedures had a remarkable impact on wine chemical characteristics, while 30 mg/L SO2 addition did not significantly affect the fermentation process. In summary, the best strategy in terms of limiting off-flavors and potentially reducing the need for SO2 addition in wine from withered grapes was the use of yeast starters, particularly mixed cultures composed by selected strains of Metschnikowia spp. and Saccharomyces cerevisiae. Application of a washing step before winemaking showed a potential to improve organoleptic characteristics of wine.
Collapse
|
7
|
Russo P, Tufariello M, Renna R, Tristezza M, Taurino M, Palombi L, Capozzi V, Rizzello CG, Grieco F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms 2020; 8:E628. [PMID: 32357569 PMCID: PMC7285007 DOI: 10.3390/microorganisms8050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
In this investigation, we explored the oenological significance of Candida zemplinina (syn. Starmerella bacillaris) isolates from Apulian grape musts. Moreover, we provide the first evidence of the impact of different C. zemplinina strains on the wine aromatic properties tested as monocultures. We described the diversity of C. zemplinina strains isolated from grapes and the variability of 'volatile' phenotypes associated with this intraspecific variability. Thirty-three isolates were characterized at strain level by PCR-based approach and, among these, 16 strains were identified and then tested by microfermentation tests carried out in grape must. Analyzed strains were low producers of acetic acid and hydrogen sulphide, not able to decarboxylate a panel of representative amino acids, whereas they showed fructophilic character and significant glycerol production. Volatile profiles of produced wines were investigated by gas chromatography-mass spectrometry. The Odor Activity Values of all molecules were calculated and 12 compounds showed values above their odor thresholds. Two selected strains (35NC1 and 15PR1) could be considered as possible starter cultures since they were able to positively affect the sensory properties of obtained wine. This report firstly supplies evidence on the strain-specific impact of different C. zemplinina strains on the final aroma of produced wines.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Maria Tufariello
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Raffaela Renna
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Mariana Tristezza
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Marco Taurino
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Lorenzo Palombi
- CNR—Institute for Applied Physics ‘Nello Carrara” (IFAC), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Carlo G. Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Francesco Grieco
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| |
Collapse
|
8
|
Intraspecific diversity and fermentative properties of Saccharomyces cerevisiae from Chinese traditional sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
A new, rapid multiplex PCR method identifies frequent probiotic origin among clinical Saccharomyces isolates. Microbiol Res 2019; 227:126298. [DOI: 10.1016/j.micres.2019.126298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
|
10
|
Binati RL, Innocente G, Gatto V, Celebrin A, Polo M, Felis GE, Torriani S. Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking. Food Res Int 2019; 122:432-442. [DOI: 10.1016/j.foodres.2019.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
|
11
|
Modulation of Wine Flavor using Hanseniaspora uvarum in Combination with Different Saccharomyces cerevisiae, Lactic Acid Bacteria Strains and Malolactic Fermentation Strategies. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hanseniaspora uvarum is one of the predominant non-Saccharomyces yeast species found on grapes and in juice, but its effect on lactic acid bacteria (LAB) growth and wine flavor has not been extensively studied. Therefore, the interaction between H. uvarum, two Saccharomyces cerevisiae yeast strains, two LAB species (Lactobacillus plantarum and Oenococcus oeni) in combination with two malolactic fermentation (MLF) strategies was investigated in Shiraz wine production trials. The evolution of the different microorganisms was monitored, non-volatile and volatile compounds were measured, and the wines were subjected to sensory evaluation. Wines produced with H. uvarum in combination with S. cerevisiae completed MLF in a shorter period than wines produced with only S. cerevisiae. Sequential MLF wines scored higher for fresh vegetative and spicy aroma than wines where MLF was induced as a simultaneous inoculation. Wines produced with H. uvarum had more body than wines produced with only S. cerevisiae. The induction of MLF using L. plantarum also resulted in wines with higher scores for body. H. uvarum can be used to reduce the duration of MLF, enhance fresh vegetative aroma and improve the body of a wine.
Collapse
|
12
|
Csoma H, Ács-Szabó L, Papp LA, Sipiczki M. Application of different markers and data-analysis tools to the examination of biodiversity can lead to different results: a case study with Starmerella bacillaris (synonym Candida zemplinina) strains. FEMS Yeast Res 2019. [PMID: 29518226 DOI: 10.1093/femsyr/foy021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Starmerella bacillaris (Candida zemplinina) is a genetically heterogeneous species. In this work, the diversity of 41 strains of various origins is examined and compared by the analysis of the length polymorphism of nuclear microsatellites and the RFLP of mitochondrial genomes. The band patterns are analysed with UPGMA, neighbor joining, neighbor net, minimum spanning tree and non-metric MDS algorithms. The results and their comparison to previous analyses demonstrate that different markers and different clustering methods can result in very different groupings of the same strains. The observed differences between the topologies of the dendrograms also indicate that the positions of the strains do not necessarily reflect their real genetic relationships and origins. The possibilities that the differences might be partially due to different sensitivity of the markers to environmental factors (selection pressure) and partially to the different grouping criteria of the algorithms are also discussed.
Collapse
Affiliation(s)
- Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - László Attila Papp
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| |
Collapse
|
13
|
Kállai Z, Pfliegler WP, Mitercsák J, Szendei G, Sipiczki M. Preservation of diversity and oenological properties of wine yeasts during long-term laboratory maintenance: A study of strains of a century-old Tokaj wine yeast collection. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Draft Genome Sequence of the Candida zemplinina (syn., Starmerella bacillaris) Type Strain CBS 9494 [corrected]. Microbiol Resour Announc 2018; 7:MRA00872-18. [PMID: 30533866 PMCID: PMC6211350 DOI: 10.1128/mra.00872-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/29/2022] Open
Abstract
Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species. Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species.
Collapse
|
15
|
Abstract
Candida stellata is an imperfect yeast of the genus Candida that belongs to the order Saccharomycetales, while phylum Ascomycota. C. stellata was isolated originally from a must overripe in Germany but is widespread in natural and artificial habitats. C. stellata is a yeast with a taxonomic history characterized by numerous changes; it is either a heterogeneous species or easily confused with other yeast species that colonize the same substrates. The strain DBVPG 3827, frequently used to investigate the oenological properties of C. stellata, was recently renamed as Starmerella bombicola, which can be easily confused with C. zemplinina or related species like C. lactis-condensi. Strains of C. stellata have been used in the processing of foods and feeds for thousands of years. This species, which is commonly isolated from grape must, has been found to be competitive and persistent in fermentation in both white and red wine in various wine regions of the world and tolerates a concentration of at least 9% (v/v) ethanol. Although these yeasts can produce spoilage, several studies have been conducted to characterize C. stellata for their ability to produce desirable metabolites for wine flavor, such as acetate esters, or for the presence of enzymatic activities that enhance wine aroma, such as β-glucosidase. This microorganism could also possess many interesting technological properties that could be applied in food processing. Exo and endoglucosidases and polygalactosidase of C. stellata are important in the degradation of β-glucans produced by Botrytis cinerea. In traditional balsamic vinegar production, C. stellata shapes the aromatic profile of traditional vinegar, producing ethanol from fructose and high concentrations of glycerol, succinic acid, ethyl acetate, and acetoin. Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 73–74% for Starmerella bombicola. Numerous studies have clearly proven that these macromolecules make multiple positive contributions to wine quality. Recent studies on C. stellata strains in wines made by co-fermentation with Saccharomyces cerevisiae have found that the aroma attributes of the individual strains were apparent when the inoculation protocol permitted the growth and activity of both yeasts. The exploitation of the diversity of biochemical and sensory properties of non-Saccharomyces yeast could be of interest for obtaining new products.
Collapse
|
16
|
Estela-Escalante WD, Moscosa-Santillán M, González-Ramírez JE, Rosales-Mendoza S. Evaluation of the Potential Production of Ethanol byCandida ZemplininaYeast with Regard to Beer Fermentation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-2532-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Waldir D. Estela-Escalante
- Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Escuela Académico Profesional de Ingeniería Agroindustrial, Lima 01, Perú
| | | | | | - Sergio Rosales-Mendoza
- Universidad Autónoma de San Luís Potosí, Facultad de Ciencias Químicas, San Luis Potosí 78210, Mexico
| |
Collapse
|
17
|
Dakal TC, Solieri L, Giudici P. Evaluation of fingerprinting techniques to assess genotype variation among Zygosaccharomyces strains. Food Microbiol 2017; 72:135-145. [PMID: 29407390 DOI: 10.1016/j.fm.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023]
Abstract
Molecular typing techniques are key tools in surveillance of food spoilage yeasts, in investigations on intra-species population diversity, and in tracing selected starters during fermentation. Unlike previous works on strain typing of Zygosaccharomyces spoilage species, here Zygosaccharomyces mellis and the Zygosaccharoymces rouxii complex yeasts, which include Z. rouxii, Zygosaccharomyces sapae, and a mosaic lineage (ML) of putatively hybrids, were evaluated by three typing methods for intra- and inter-species resolution. Overall these yeasts are relevant for food fermentation and spoilage, but are quite difficult to discriminate at strain and species level as they evolved by reticulation. A pool of 76 strains from different sources were typed by M13 and (GTG)5 MSP-PCR fingerprinting and PCR-RFLP of ribosomal intergenic spacer region (IGS). We demonstrated that M13 overcame (GTG)5 fingerprinting to group Z. sapae, Z. rouxii, Z. mellis and the ML isolates in congruent distinct clusters. Even if (GTG)5 primer yielded a number of DNA fingerprints comparable with those obtained by M13 primer, it failed to discriminate Z. sapae, Z. mellis and Z. rouxii at species level. Clustering of IGS RFLP patterns obtained with three endonucleases produced groups congruent with species assignment and highlighted intra-species diversity similar to that observed by M13 fingerprinting. However, IGS PCR amplification failed for 14 ML and 6 Z. mellis strains under the experimental conditions tested here, indicating that this marker could be less easy to use in fast typing protocol. Finally, our results posit that the genetic diversity within Z. sapae and Z. mellis could be shaped by isolation source. The information generated in this study would facilitate the monitoring of these yeasts during food processing and storage, and provides preliminary evidences about Z. sapae and Z. mellis intra-species diversity.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy.
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia 42122, Italy
| |
Collapse
|
18
|
Englezos V, Giacosa S, Rantsiou K, Rolle L, Cocolin L. Starmerella bacillaris in winemaking: opportunities and risks. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Albertin W, Zimmer A, Miot-Sertier C, Bernard M, Coulon J, Moine V, Colonna-Ceccaldi B, Bely M, Marullo P, Masneuf-Pomarede I. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Appl Microbiol Biotechnol 2017; 101:7603-7620. [PMID: 28913648 DOI: 10.1007/s00253-017-8492-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/23/2017] [Accepted: 07/30/2017] [Indexed: 11/26/2022]
Abstract
Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking.
Collapse
Affiliation(s)
- Warren Albertin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France.
- ENSCBP, Bordeaux INP, 33600, Pessac, France.
| | - Adrien Zimmer
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- INRA, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, 33140, Villenave d'Ornon, France
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | | | | | | | - Marina Bely
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Biolaffort, 33100, Bordeaux, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA,, Bordeaux INP, 33140, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170, Gradignan, France
| |
Collapse
|
20
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
21
|
Pinto L, Caputo L, Quintieri L, de Candia S, Baruzzi F. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Food Microbiol 2017; 66:190-198. [PMID: 28576368 DOI: 10.1016/j.fm.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m-3) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - S de Candia
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
22
|
Wei J, Niu C, Liu B, Yuan Y, Yue T. Identification and characterization of epiphytic yeasts on apples in China. RSC Adv 2017. [DOI: 10.1039/c7ra08234g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first report regarding yeast diversity on apples from the two largest producing areas in China.
Collapse
Affiliation(s)
- Jianping Wei
- College of Food Science and Engineering
- Northwest A&F University
- 712100 Yangling
- China
| | - Chen Niu
- College of Food Science and Engineering
- Northwest A&F University
- 712100 Yangling
- China
| | - Bin Liu
- College of Food Science and Engineering
- Northwest A&F University
- 712100 Yangling
- China
| | - Yahong Yuan
- College of Food Science and Engineering
- Northwest A&F University
- 712100 Yangling
- China
| | - Tianli Yue
- College of Food Science and Engineering
- Northwest A&F University
- 712100 Yangling
- China
| |
Collapse
|
23
|
Pfliegler W, Sipiczki M. Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping ofSaccharomyces cerevisiaestrains. Lett Appl Microbiol 2016; 63:406-411. [DOI: 10.1111/lam.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- W.P. Pfliegler
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| | - M. Sipiczki
- Department of Genetics and Applied Microbiology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
24
|
Accessing spoilage features of osmotolerant yeasts identified from kiwifruit plantation and processing environment in Shaanxi, China. Int J Food Microbiol 2016; 232:126-33. [DOI: 10.1016/j.ijfoodmicro.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
|
25
|
Banilas G, Sgouros G, Nisiotou A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol Res 2016; 193:1-10. [PMID: 27825476 DOI: 10.1016/j.micres.2016.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
Lachancea (Kluyveromyces) thermotolerans is an important member of the grape/wine yeast community with great technological potential for the wine industry. Although several molecular marker techniques have been developed for typing different yeast species, no one has been designed so far for L. thermotolerans. Here we present a simple and efficient method based on a multilocus SSR analysis for molecular typing and genetic diversity assessment of L. thermotolerans isolates. Following whole genome screening, five polymorphic microsatellite markers were selected and tested on a panel of grape isolates from different vineyards of two geographically separated viticultural zones, Nemea and Peza, in Greece. The SSR method proved quite discriminatory as compared to tandem repeat-tRNA-PCR, a fingerprinting method for typing non-Saccharomyces yeasts. Genetic analysis based on SSR data revealed a clear structure between the populations of the two zones. Furthermore, significant differences were also detected in a number of phenotypic characters of enological interest. A positive correlation was observed between phenotypic and genotypic diversity. Taking together, present results support the microbial terroir concept in the case of L. thermotolerans in Greece, which is an important prerequisite for the exploitation of selected genotypes as fermentation starters with region-specific characters.
Collapse
Affiliation(s)
- Georgios Banilas
- Department of Enology and Beverage Technology, Technological Educational Institute of Athens, Ag. Spyridonos Street, 12210, Greece
| | - Georgios Sgouros
- Institute of Technology of Agricultural Products, ELGO DEMETER, 1 S. Venizelou Str., Lykovrysi, 14123, Greece; Department of Molecular Biology and Genetics, Democritus University of Thrace Dragana, Alexandroupolis, 68100, Greece
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, ELGO DEMETER, 1 S. Venizelou Str., Lykovrysi, 14123, Greece.
| |
Collapse
|
26
|
Estela-Escalante WD, Rosales-Mendoza S, Moscosa-Santillán M, González-Ramírez JE. Evaluation
of the fermentative potential of Candida zemplinina
yeasts for craft beer fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- W. D. Estela-Escalante
- Facultad de Ciencias Químicas; Universidad Autónoma de San Luís Potosí; San Luis Potosí SLP México
- Facultad de Química e Ingeniería Química, Escuela Académico Profesional de Ingeniería Agroindustrial; Universidad Nacional Mayor de San Marcos; Lima 1 Perú
| | - S. Rosales-Mendoza
- Facultad de Ciencias Químicas; Universidad Autónoma de San Luís Potosí; San Luis Potosí SLP México
| | - M. Moscosa-Santillán
- Facultad de Ciencias Químicas; Universidad Autónoma de San Luís Potosí; San Luis Potosí SLP México
| | - J. E. González-Ramírez
- Facultad de Ciencias Químicas; Universidad Autónoma de San Luís Potosí; San Luis Potosí SLP México
| |
Collapse
|
27
|
Masneuf-Pomarede I, Bely M, Marullo P, Albertin W. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Front Microbiol 2016; 6:1563. [PMID: 26793188 PMCID: PMC4707289 DOI: 10.3389/fmicb.2015.01563] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.
Collapse
Affiliation(s)
- Isabelle Masneuf-Pomarede
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- Bordeaux Sciences AgroGradignan, France
| | - Marina Bely
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
| | - Philippe Marullo
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- BiolaffortBordeaux, France
| | - Warren Albertin
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- ENSCBP, Bordeaux INPPessac, France
| |
Collapse
|
28
|
Capozzi V, Garofalo C, Chiriatti MA, Grieco F, Spano G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol Res 2015; 181:75-83. [DOI: 10.1016/j.micres.2015.10.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
|
29
|
Ubeda-Iranzo J, Díaz-Hellín P, Chacón-Ocaña M, Briones A. Detection of non-Saccharomyces yeast strains in alcoholic fermentations by direct PCR and/or plating methods. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2509-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Masneuf-Pomarede I, Juquin E, Miot-Sertier C, Renault P, Laizet Y, Salin F, Alexandre H, Capozzi V, Cocolin L, Colonna-Ceccaldi B, Englezos V, Girard P, Gonzalez B, Lucas P, Mas A, Nisiotou A, Sipiczki M, Spano G, Tassou C, Bely M, Albertin W. The yeastStarmerella bacillaris(synonymCandida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res 2015; 15:fov045. [DOI: 10.1093/femsyr/fov045] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 01/12/2023] Open
|
31
|
Canonico L, Comitini F, Ciani M. TdPIR minisatellite fingerprinting as a useful new tool for Torulaspora delbrueckii molecular typing. Int J Food Microbiol 2015; 200:47-51. [PMID: 25676242 DOI: 10.1016/j.ijfoodmicro.2015.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/28/2022]
Abstract
Torulaspora delbrueckii yeast strains are being increasingly applied at the industrial level, such as in the winemaking process, and so their identification and characterisation require effective, fast, accurate, reproducible and reliable approaches. Therefore, the development of typing techniques that allow discrimination at the strain level will provide an essential tool for those working with T. delbrueckii strains. Here, 28 T. delbrueckii strains from various substrates were characterised using different PCR-fingerprinting molecular methods: random amplified polymorphic DNA with polymerase chain reaction (RAPD-PCR), minisatellites SED1, AGA1, DAN4 and the newly designed T. delbrueckii (Td)PIR, and microsatellites (GAC)5 and (GTG)5. The aim was to determine and compare the efficacies, reproducibilities and discriminating powers of these molecular methods. RAPD-PCR using the M13 primers and the newly designed TdPIR3 minisatellite primer pair provided discrimination of the greatest number of T. delbrueckii strains. TdPIR3 clustered the 28 strains into 16 different groups with an efficiency of 100%, while M13 clustered the strains into 17 different groups, although with a lower efficiency of 89%. Moreover, the TdPIR3 primers showed reproducible profiles when the stringency of the PCR protocol was varied, which highlighted the great robustness of this technique. In contrast, variation of the stringency of the M13 PCR protocol resulted in modification of the amplified profiles, which suggested low reproducibility of this technique.
Collapse
Affiliation(s)
- Laura Canonico
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
32
|
Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol 2015; 199:33-40. [PMID: 25625909 DOI: 10.1016/j.ijfoodmicro.2015.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 11/26/2022]
Abstract
Nowadays, the use of non-Saccharomyces yeasts in combination with Saccharomyces cerevisiae is a state-of-the-art strategy to improve complexity and enhance the analytical composition of the wines. This application has stimulated the interest of understanding how the non-Saccharomyces yeasts can contribute to the quality of the wines. The study presented here explores the potential use of Starmerella bacillaris (synonym Candida zemplinina) under winemaking conditions. Physiological and genetic characterizations of sixty-three isolates of Starm. bacillaris, previously isolated from four different varieties of grapes, were carried out. Both analyses revealed a low level of diversity between the isolates of Starm. bacillaris, while the fermentation trials in laboratory scale demonstrated the good enological performance of this species. The strong fructophilic character of this species and its ability to produce low quantities of ethanol and acetic acid and high amounts of glycerol were confirmed. The results, presented here, demonstrated a potential application of this non-Saccharomyces species in mixed wine fermentations with S. cerevisiae.
Collapse
Affiliation(s)
- Vasileios Englezos
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Kalliopi Rantsiou
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Fabrizio Torchio
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Rolle
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Vincenzo Gerbi
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| |
Collapse
|
33
|
Vigentini I, De Lorenzis G, Fabrizio V, Valdetara F, Faccincani M, Panont CA, Picozzi C, Imazio S, Failla O, Foschino R. The vintage effect overcomes the terroir effect: a three year survey on the wine yeast biodiversity in Franciacorta and Oltrepò Pavese, two northern Italian vine-growing areas. MICROBIOLOGY-SGM 2014; 161:362-373. [PMID: 25479840 DOI: 10.1099/mic.0.000004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A three year survey on the dominant yeast populations in samples of air, must and wine in different vineyards and cellars of two northern Italian vine-growing territories (six sites in Franciacorta and eight sites in Oltrepò Pavese areas) was carried out. A total of 505 isolates were ascribed to 31 different species by RFLP analysis of the ITS1-5.8SrRNA-ITS2 region and partial sequence analysis of the 26S rRNA gene. The most commonly found species were Saccharomyces cerevisiae (frequency, F' = 58.7%; incidence, I' = 53.5%), Hanseniaspora uvarum (F' = 14.3%; I' = 5.3%), Metschnikowia fructicola (F' = 11.1%; I' = 5.0%) and Torulaspora delbrueckii (F' = 10.3%; I' = 3.8%). Among 270 S. cerevisiae new isolates, 156 (57.8%) revealed a different genetic pattern through polymorphism analysis of the interdelta regions by capillary electrophoresis, while 47 isolates (17.4 %) were clones of starter cultures. By considering the Shannon-Wiener index and results of principal component analysis (PCA) analyses, the year of isolation (vintage) proved to be a factor that significantly affected the biodiversity of the yeast species, whereas the geographical site (terroir) was not. Seventy-five per cent of S. cerevisiae isolates gathered in a unique cluster at a similarity level of 82%, while the remaining 25% were separated into minor groups without any evident relationship between δ-PCR profile and territory, year or source of isolation. However, in six cases a similar strain appeared at the harvesting time both in Franciacorta and Oltrepò Pavese areas, whereas surprisingly no strain was reisolated in the same vineyard or cellar for consecutive years.
Collapse
Affiliation(s)
- Ileana Vigentini
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Vincenzo Fabrizio
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Valdetara
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | - Claudia Picozzi
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| | - Serena Imazio
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutrition Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
34
|
Three clustered cases of candidemia caused by Candida quercitrusa and mycological characteristics of this novel species. J Clin Microbiol 2014; 52:3044-8. [PMID: 24696025 DOI: 10.1128/jcm.00246-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated three nosocomial Candida quercitrusa candidemia cases occurring within 2 months in a Chinese hospital. Isolates were identifiable only by DNA sequencing of the rRNA genes. Genetic (via random amplified polymorphic DNA [RAPD]) and protein mass spectral (via matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) analyses yielded identical profiles suggesting an outbreak. The fluconazole MICs of all the strains were 16 to 32 μg/ml.
Collapse
|