1
|
Su Z, Li H, Xu Y, Zhang C, Wu J, Lei Y. Establishment of an efficient Agrobacterium tumefaciens-mediated transformation system for an Armillaria species, a host of the fully mycoheterotrophic plant Gastrodia elata. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01230-8. [PMID: 39644422 DOI: 10.1007/s12223-024-01230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The genus Armillaria (Basidiomycota, Agaricales, Physalacriaceae) comprises pathogenic fungi that cause root-rot disease in plants, as well as species with low pathogenicity, some of which are hosts of the fully mycoheterotrophic orchid plant Gastrodia elata (Orchidaceae). To investigate the mechanisms underlying such special interactions between Armillaria fungi and G. elata, it is crucial to establish genetic transformation platforms for the Armillaria fungi and G. elata. In this study, an Armillaria strain Arm37 was isolated from G. elata, which can form symbiosis with G. elata in axenic culture under laboratory conditions. A vector pYT-EV containing a cassette for hygromycin-resistance selection and a cassette for expressing or silencing target genes was constructed. An Agrobacterium tumefaciens-mediated transformation (ATMT) system for Arm37 was successfully developed and optimized to achieve a transformation efficiency of 32%. The ATMT system was successfully used to express the reporter genes eGFP encoding enhanced green fluorescent protein and GUS encoding β-glucuronidase and to effectively silence the endogenous gene URA3 encoding orotidine-5'-phosphate decarboxylase in Arm37. This ATMT system established for Arm37 provides an efficient genetic tool for exploring the Arm37 genes that are involved in the unique interaction between the Armillaria fungi and fully mycoheterotrophic plant G. elata.
Collapse
Affiliation(s)
- Zhongxiang Su
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hongjing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming, China.
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Wu L, Hu X, Yan S, Wu Z, Tang X, Xie L, Qiu Y, Li R, Chen J, Tian M. Establishment of an Agrobacterium tumefaciens-Mediated Transformation System for Hirsutella sinensis. Curr Issues Mol Biol 2024; 46:10618-10632. [PMID: 39329981 PMCID: PMC11430471 DOI: 10.3390/cimb46090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 μM and 50 μg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis.
Collapse
Affiliation(s)
- Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xinkun Hu
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zenglin Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xuzhong Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Lei Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Yujie Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| |
Collapse
|
3
|
Claypool DJ, Zhang YG, Xia Y, Sun J. Conditional Vitamin D Receptor Deletion Induces Fungal and Archaeal Dysbiosis and Altered Metabolites. Metabolites 2024; 14:32. [PMID: 38248835 PMCID: PMC10819266 DOI: 10.3390/metabo14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
A vitamin D receptor (VDR) deficiency leads to the dysbiosis of intestinal bacteria and is associated with various diseases, including cancer, infections, and inflammatory bowel disease. However, the impact of a VDR deficiency on fungi and archaea is unknown. We conditionally deleted the VDR in Paneth cells (VDRΔPC), intestinal epithelial cells (VDRΔIEC), or myeloid cells (VDRΔLyz) in mice and collected feces for shotgun metagenomic sequencing and untargeted metabolomics. We found that fungi were significantly altered in each knockout (KO) group compared to the VDRLoxp control. The VDRΔLyz mice had the most altered fungi species (three depleted and seven enriched), followed by the VDRΔPC mice (six depleted and two enriched), and the VDRΔIEC mice (one depleted and one enriched). The methanogen Methanofollis liminatans was enriched in the VDRΔPC and VDRΔLyz mice and two further archaeal species (Thermococcus piezophilus and Sulfolobus acidocaldarius) were enriched in the VDRΔLyz mice compared to the Loxp group. Significant correlations existed among altered fungi, archaea, bacteria, and viruses in the KO mice. Functional metagenomics showed changes in several biologic functions, including decreased sulfate reduction and increased biosynthesis of cobalamin (vitamin B12) in VDRΔLyz mice relative to VDRLoxp mice. Fecal metabolites were analyzed to examine the involvement of sulfate reduction and other pathways. In conclusion, a VDR deficiency caused the formation of altered fungi and archaea in a tissue- and sex-dependent manner. These results provide a foundation about the impact of a host factor (e.g., VDR deficiency) on fungi and archaea. It opens the door for further studies to determine how mycobiome and cross-kingdom interactions in the microbiome community and metabolites contribute to the risk of certain diseases.
Collapse
Affiliation(s)
- Duncan J. Claypool
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.C.); (Y.-G.Z.)
- Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Yong-Guo Zhang
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.C.); (Y.-G.Z.)
| | - Yinglin Xia
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.C.); (Y.-G.Z.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.C.); (Y.-G.Z.)
- Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Li J, Wu M, Igarashi Y, Luo F, Chang P. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. J Microbiol Methods 2023; 214:106842. [PMID: 37827437 DOI: 10.1016/j.mimet.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Dichomitus squalens is an efficient white-rot fungus that generates a wide range of extracellular enzymes to degrade lignocellulose in nature. Although a protoplast-mediated transformation method for D. squalens has been developed, the transformation efficiency remains low. Here, we established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) procedure for D. squalens by transferring a binary vector harboring the neomycin phosphotransferase II (nptII) resistance gene fused with DsRed-Express2, under the control of the native glyceraldehyde-3-phosphate dehydrogenase (GPD) gene promoter. Key factors affecting the efficiency of transformation were tested. A. tumefaciens EHA105 strain with a cell density of 0.4 OD600nm and 96 h co-cultivation resulted in the highest transformation efficiency, with an average of 98 ± 11 transformants per co-cultivation plate. Besides, the strong expression of DsRed-Express2 indicates the effectiveness of the DsGPD promoter in driving gene expression in D. squalens. This ATMT system of D. squalens would be beneficial for its molecular genetic studies.
Collapse
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Min Wu
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peng Chang
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Xiang Q, Arshad M, Li Y, Zhang H, Gu Y, Yu X, Zhao K, Ma M, Zhang L, He M, Chen Q. Transcriptomic profiling revealed important roles of amino acid metabolism in fruiting body formation at different ripening times in Hypsizygus marmoreus. Front Microbiol 2023; 14:1169881. [PMID: 37180258 PMCID: PMC10167310 DOI: 10.3389/fmicb.2023.1169881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Hypsizygus marmoreus is an industrial mushroom that is widely cultivated in East Asia. Its long postripening stage before fruiting severely limits its industrialized production. Methods Five different mycelial ripening times (30, 50, 70, 90, and 100 d) were chosen and primordia (30P, 50P, 70P, 90P, and 110P) were collected for comparative transcriptomic analyses. The corresponding substrates (30F, 50F, 70F, 90F, and 110F) were used for nutrient content and enzyme activity determination. Results In pairwise comparisons between 110P and other primordia, a total of 1,194, 977, 773, and 697 differentially expressed genes (DEGs) were identified in 30P_110P, 50P_110P, 70P_110P, and 90P_110P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) functional enrichment analyses revealed that the DEGs were mainly associated with amino acid metabolism, and lipid and carbohydrate metabolism pathways. Tyrosine, tryptophan, phenylalanine and histidine metabolism were enriched in all groups. Among the main carbon nutrients, the contents of cellulose and hemicellulose were high, and the lignin content decreased with the extension of the ripening time. Laccase had the highest activity, and acid protease activity decreased with the extension of the ripening time. Discussion The highly enrichment for amino acid metabolic pathways in primordia reveals that these pathways are essential for fruiting body formation in H. marmoreus, and these results will provide a basis for the optimization of its cultivation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Muhammad Arshad
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yakun Li
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huijuan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Maolan He
- Qinghai Spring Medicinal Resources Technology Co., Ltd., Chengdu, Sichuan, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhu L, Su Y, Ma Z, Guo L, Yang S, Yu H. Comparative proteomic analysis reveals differential protein expression of Hypsizygus marmoreus in response to different light qualities. Int J Biol Macromol 2022; 223:1320-1334. [PMID: 36395936 DOI: 10.1016/j.ijbiomac.2022.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Light is important environmental stress that influences the growth, development, and metabolism of Hypsizygus marmoreus (white var.). However, the molecular basis of the light effect on H. marmoreus remains unclear. In this study, a label-free comparative proteomic analysis was applied to investigate the global protein expression profile of H. marmoreus mycelia growing under white, red, green, and blue light qualities and darkness (control). Among 3149 identified proteins in H. marmoreus, 2288 were found to be expressed in all tested conditions. Data of Each light quality was compared with darkness for further analysis, numerous differentially expressed proteins (DEPs) were identified and the white light group showed the most. All the up-regulated and down-regulated DEPs were annotated and analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The KEGG enrichment analysis revealed that light stress was associated with primary metabolism, glycolysis/gluconeogenesis, MAPK, proteasome, and carbohydrate-active enzyme pathways. This study advances valuable insights into the molecular mechanisms underlying the role of different light qualities in mushroom growth and development.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Yao Su
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Zhiheng Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Fu J, Brockman NE, Wickes BL. Optimizing Transformation Frequency of Cryptococcus neoformans and Cryptococcus gattii Using Agrobacterium tumefaciens. J Fungi (Basel) 2021; 7:jof7070520. [PMID: 34209781 PMCID: PMC8305055 DOI: 10.3390/jof7070520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.
Collapse
|
9
|
Zhang J, Hao H, Liu H, Wang Q, Chen M, Feng Z, Chen H. Genetic and functional analysis of the Zn(II) 2Cys 6 transcription factor HADA-1 in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2021; 105:2815-2829. [PMID: 33675375 DOI: 10.1007/s00253-021-11175-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Zn(II)2Cys6 transcription factors are critical for the reproductive growth and sexual development of fungi, but their roles in Basidiomycota remain unclear. In this study, the Hypsizygus marmoreus gene hada-1 was shown to encode a Zn(II)2Cys6 transcription factor, the growth rate of mycelia was decreased, hyphae were angulated, and fruiting body development was hindered in the hada-1-silenced strains. In addition, mitochondrial stability was lost, and the mitochondria morphologies changed from oval shaped to dumbbell or linear shaped in the silenced strains. Regarding mitochondrial instability, the mitochondrial complex II, III, and V activities and adenosine triphosphate content were significantly decreased. At the same time, the activities of the carbohydrate metabolism-related enzymes glucose-6-plosphatase, glucose dehydrogenase, and laccase were significantly decreased, which might have resulted in the reduction of carbon metabolism. Furthermore, hada-1 was shown to regulate the reactive oxygen species (ROS) level; compared with the wild-type (WT) strain, the silenced mycelia exhibited higher ROS contents and were more sensitive to oxidative stress. Taken together, these results indicate that, as a global regulator, hada-1 plays crucial roles in mycelial growth, fruiting body development, carbon metabolism, mitochondrial stability, and oxidative stress in the basidiomycete H. marmoreus. KEY POINTS: • Zn(II)2Cys6 transcription factor, mitochondrial stability, fruiting body development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Hong Liu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang Road, Xuanwu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
10
|
Zhang J, Hao H, Wu X, Wang Q, Chen M, Feng Z, Chen H. The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2020; 104:10555-10570. [PMID: 33175244 DOI: 10.1007/s00253-020-10981-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xuelan Wu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
11
|
Hong CP, Moon S, Yoo SI, Noh JH, Ko HG, Kim HA, Ro HS, Cho H, Chung JW, Lee HY, Ryu H. Functional Analysis of a Novel ABL ( Abnormal Browning Related to Light) Gene in Mycelial Brown Film Formation of Lentinula edodes. J Fungi (Basel) 2020; 6:E272. [PMID: 33182449 PMCID: PMC7712820 DOI: 10.3390/jof6040272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Lentinula edodes is a globally important edible mushroom species that is appreciated for its medicinal properties as well as its nutritional value. During commercial cultivation, a mycelial brown film forms on the surface of the sawdust growth medium at the late vegetative stage. Mycelial film formation is a critical developmental process that contributes to the quantity and quality of the mushroom yield. However, little is known regarding the genetic underpinnings of brown film formation on the surface of mycelial tissue. A novel causal gene associated with the formation of the mycelial brown film, named ABL (Abnormal browning related to light), was identified in this study. The comparative genetic analysis by dihybrid crosses between normal and abnormal browning film cultivars demonstrated that a single dominant allele was responsible for the abnormal mycelium browning phenotype. Whole-genome sequencing analysis of hybrid isolates revealed five missense single-nucleotide polymorphisms (SNPs) in the ABL locus of individuals forming abnormal partial brown films. Additional whole-genome resequencing of a further 16 cultivars showed that three of the five missense SNPs were strongly associated with the abnormal browning phenotype. Overexpression of the dominant abl-D allele in a wild-type background conferred the abnormal mycelial browning phenotype upon transformants, with slender hyphae observed as a general defective mycelial growth phenotype. Our methodology will aid the future discovery of candidate genes associated with favorable traits in edible mushrooms. The discovery of a novel gene, ABL, associated with mycelial film formation will facilitate marker-associated breeding in L. edodes.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea;
| | - Seung-il Yoo
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Jong-Hyun Noh
- Forest Mushroom Research Center, National Forestry Cooperative Federation, Yeoju 12653, Korea; (J.-H.N.); (H.-G.K.)
| | - Han-Gyu Ko
- Forest Mushroom Research Center, National Forestry Cooperative Federation, Yeoju 12653, Korea; (J.-H.N.); (H.-G.K.)
| | - Hyun A. Kim
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Hyeon-Su Ro
- Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea; (H.C.); (J.-W.C.)
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea; (H.C.); (J.-W.C.)
| | - Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea;
| |
Collapse
|
12
|
Chen N, Chen M, Wu T, Bian Y, Xu Z. The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 2020; 36:140. [PMID: 32803511 DOI: 10.1007/s11274-020-02916-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Genetic transformation methods reported for Wolfiporia cocos are limited. In this study, we describe an efficient RNA interference (RNAi) system based on Agrobacterium-mediated transformation approach in W. cocos for the first time. Actively growing mycelial plugs were used as recipients for transformation using endogenous orotidine-5'-phosphate decarboxylase gene (URA3) as both a selective marker and a silencing gene, under the control of the dual promoters of Legpd and Leactin from Lentinula edodes and the single promoter of Wcgpd from W. cocos, respectively. The results showed that both the two kinds of promoters effectively drive the expression of URA3 gene, and the URA3-silenced transformants could be selected on CYM medium containing 5'-fluoroorotic acid. In addition, silencing URA3 gene has no effect on the growth of W. cocos hyphae. The incomplete silencing of the URA3 locus was also observed in this study. This study will promote further study on the mechanism of substrate degradation, sclerotial formation, and biosynthesis network of pharmacological compounds in W. cocos.
Collapse
Affiliation(s)
- Naiyao Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengting Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinbing Bian
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangyi Xu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Sun Z, Lv J, Ji C, Liang H, Li S, Yang Z, Xu W, Zhang S, Lin X. Analysis of carotenoid profile changes and carotenogenic genes transcript levels in Rhodosporidium toruloides mutants from an optimized Agrobacterium tumefaciens-mediated transformation method. Biotechnol Appl Biochem 2020; 68:71-81. [PMID: 32017256 DOI: 10.1002/bab.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Rhodosporidium toruloides has been reported as a potential biotechnological microorganism to produce carotenoids. The most commonly used molecular and genetic manipulation methods based on Agrobacterium-mediated transformation (ATMT). However, this method was of relatively lower transformation efficiency. In this study, we optimized the ATMT method for R. toruloides on account of the promoter on T-DNA, the ratio of A. tumefaciens to R. toruloides NP11, acetosyringone concentration, cocultivation temperature and time, and a transformation efficiency of 2,369 cells per 105 recipient cells was obtained and was 24 times as that of the previous report. With this optimized method, four redder mutants and four yellower mutants were selected out with torularhodin and β-carotene production preference, respectively. The highest torularhodin production was 1,638.15 µg/g dry cell weight in A1-13. The yellower mutants were found to divert the metabolic flux from torularhodin and torulene to γ-carotene and β-carotene, and the proportion of γ-carotene and β-carotene were all over 92%. TAIL-PCR was carried out to found T-DNA insertion in these mutants, and insertion hotspot was found. RT-qPCR results showed that CTA1 genes in these mutants were closely related to the synthesis of total carotenoids, especially torularhodin, and was a potenial metabolic engineering site in the future.
Collapse
Affiliation(s)
- Zeping Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Jing Lv
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Shengjie Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Zhaoxia Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
14
|
Bao D, Huang Z, Li Y, Zhou C, Li Y, Wan J, Tang L, Mao W, Wang Y, Gong M, Zou G, Honda Y, Yang R, Shang J. Agrobacterium-mediated transformation of arthroconidia obtained from the edible mushroom Hypsizygus marmoreus. J Microbiol Methods 2020; 171:105878. [PMID: 32092329 DOI: 10.1016/j.mimet.2020.105878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
Using the carboxin resistance gene from Pleurotus eryngii as a selective marker, we introduced foreign DNA into the arthroconidia of Hypsizygus marmoreus through Agrobacterium-mediated transformation. The function of the exogenous GUS (β-glucuronidase) gene driven by the CaMV35S promoter was detected in the transformants.
Collapse
Affiliation(s)
- Dapeng Bao
- College of Food Science, Shanghai Ocean University, 999 Huchenghuan Road, Pudong District, Shanghai 201306, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Zhiheng Huang
- College of Food Science, Shanghai Ocean University, 999 Huchenghuan Road, Pudong District, Shanghai 201306, China
| | - Yan Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Chenli Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Yan Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Jianing Wan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Lihua Tang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Wenjun Mao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyoku-ku, Kyoto 606-8502, Japan
| | - Ruiheng Yang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China.
| | - Junjun Shang
- College of Food Science, Shanghai Ocean University, 999 Huchenghuan Road, Pudong District, Shanghai 201306, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China.
| |
Collapse
|
15
|
Yan M, Yuan B, Cheng S, Huang H, Huang D, Chen J, Cao C. Nanocomposite-based packaging affected the taste components of white Hypsizygus marmoreus by regulating energy status. Food Chem 2019; 311:125939. [PMID: 31855774 DOI: 10.1016/j.foodchem.2019.125939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The effects of nanocomposite-based packaging material (Nano-PM) on the taste components and mitochondrial energy metabolism of postharvest white Hypsizygus marmoreus (WHM), as well as the underlying influence mechanism were investigated. The results showed that the major taste components, including succinic acid and mannitol, remained at higher level in Nano-PM. The flavor 5'-nucleotides (5'-GMP and 5'-IMP) of WHM in Nano-PM were significantly higher (p < 0.05) compared with that in the normal packaging material (Normal-PM). Principal component analysis indicated that there was a distinction of flavor compounds (6 organic acids, 3 soluble sugars and 5 5'-nucleotides) of WHM between Nano-PM and Normal PM treatments during storage. Moreover, Nano-PM delayed the mitochondrial microstructure breakdown and the reduction of ATPase activity, and it maintained a higher ATP content and higher level of energy charge. Our results demonstrated that Nano-PM could affect the taste components of postharvest WHM partially by regulating the energy metabolism.
Collapse
Affiliation(s)
- Ming Yan
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Biao Yuan
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shujie Cheng
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huidan Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Dechun Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jianqiu Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Chongjiang Cao
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
16
|
Shang J, Yang R, Tang L, Li Y, Li Y, Mao W, Gong M, Wang Y, Honda Y, Bao D. Differential expression of two gpd genes in the cultivated mushroom Pleurotus eryngii using RNA sequencing analysis. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Barh A, Sharma VP, Annepu SK, Kamal S, Sharma S, Bhatt P. Genetic improvement in Pleurotus (oyster mushroom): a review. 3 Biotech 2019; 9:322. [PMID: 31406644 DOI: 10.1007/s13205-019-1854-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Pleurotus is an important genus comprising several edible species of great commercial significance. These species are grown all across the world. The production areas of Pleurotus mainly belong to the Asian part and are gaining wide popularity across the globe owing to their promising nutritional gains. The demand for improved strains with high productivity has also been rising. The genetic improvement in Pleurotus started with a simple selection technique, which later utilized hybridization (intraspecific, interspecific and intergeneric) and mutation breeding. The traits such as productivity, sporelessness and quality improvement are important objectives on which most of the works have been done so far. However, new generation approaches such as molecular breeding, genetic transformation and genome editing techniques also added pace to the present improvement process. Hitherto, seven species of Pleurotus have been sequenced and a sizable data has been generated that can be used in further breeding programs. This paper discusses and summarizes various research findings on genetic improvement of Pleurotus and gives an outlook for future breeding programs.
Collapse
|
18
|
Effects of Medium Composition and Genetic Background on Agrobacterium-Mediated Transformation Efficiency of Lentinula edodes. Genes (Basel) 2019; 10:genes10060467. [PMID: 31248134 PMCID: PMC6627104 DOI: 10.3390/genes10060467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
The establishment of genetic transformation method is crucial for the functional genomics research in filamentous fungi. Although the transformation method has been developed in several types of fungi, a highly efficient and convenient transformation system is desperately needed in Lentinula edodes. Present work established the Agrobacterium-mediated transformation (ATMT) of basidiomycete L. edodes in both monokaryon and dikaryon mycelia by using constructed binary plasmid pCAMBIA-1300-GFP. Then, the transformation efficiency of ATMT was evaluated by using different mediums for recipient incubation and different varieties of L. edodes. The results showed that in dikaryon strain W1, the positive hygromycin-resistant transformants was observed in all medium with the positive frequency of selected transformants that ranged from 0 to 30%. While in the monokaryon strain W1-26, only the millet medium group obtained positive transformants with a positive frequency of 75.48%. Moreover, three dikaryotic wild strains (YS55, YS3334, and YS3357) and two dikaryotic cultivated strains (W1 and S606) showed the highest transformation efficiency, with 32.96% of the germination frequency, and 85.12% of positive frequency for hygromycin-resistant transformants. This work demonstrated that Agrobacterium-mediated transformation was successfully performed in L. edodes, and the genotype of recipients as well as the medium for mycelial incubation were suggested to play key roles in determining the transformation efficiency. These findings may provide new avenues for the genetic modification of edible mushroom and may extend the cognition of DNA-mediated transformation in filamentous fungi.
Collapse
|
19
|
Zhang SM, Bai JH, Chang MC, Meng JL, Liu JY, Feng CP. Color, texture and enzyme activities of Hypsizygus marmoreus as affected by heating combined with color protection and hardening. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1566242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Su-min Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Jin-hao Bai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Ming-chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Jun-long Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Research Station for Engineering Technology of Edible Fungi, Taigu, China
| | - Jing-yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Cui-ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
20
|
Lv S, Chen X, Mou C, Dai S, Bian Y, Kang H. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors. World J Microbiol Biotechnol 2018; 34:148. [DOI: 10.1007/s11274-018-2529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
|
21
|
A colonized millet grain method for Agrobacterium-mediated transformation of the button mushroom Agaricus bisporus. J Microbiol Methods 2018; 152:148-153. [DOI: 10.1016/j.mimet.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
22
|
Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin. Molecules 2018; 23:molecules23040880. [PMID: 29641470 PMCID: PMC6017272 DOI: 10.3390/molecules23040880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/17/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. Although some PoLacs have been reported in several studies, still no comprehensive bioinformatics study of the LAC family in Pleurotus ostreatus has been reported. In this study, we identified 12 laccase genes in the whole genome sequence of P. ostreatus and their physical characteristics, gene distribution, phylogenic relationships, gene structure, conserved motifs, and cis-elements were also analyzed. The expression patterns of 12 PoLac genes at different developmental stages and under different culture substrates were also analyzed. The results revealed that PoLac2 and PoLac12 may be involved in the degradation of lignin and the formation of the fruiting body, respectively. Subsequently, we overexpressed PoLac2 in P. ostreatus by the Agrobacterium tumefaciens-mediated transformation (ATMT) method. The transformants' laccase activity increased in varying degrees, and the gene expression level of PoLac2 in transformants was 2-8 times higher than that of the wild-type strain. Furthermore, the lignin degradation rate by transgenic fungus over 30 days was 2.36-6.3% higher than that of wild-type. Our data show that overexpression of PoLac2 significantly enhanced the lignin degradation of cotton-straw. To our knowledge, this study is the first report to demonstrate the functions of PoLac2 in P. ostreatus.
Collapse
|
23
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Coradetti ST, Pinel D, Geiselman GM, Ito M, Mondo SJ, Reilly MC, Cheng YF, Bauer S, Grigoriev IV, Gladden JM, Simmons BA, Brem RB, Arkin AP, Skerker JM. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. eLife 2018. [PMID: 29521624 PMCID: PMC5922974 DOI: 10.7554/elife.32110] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. The fungus Rhodosporidium toruloides can grow on substances extracted from plant matter that is inedible to humans such as corn stalks, wood pulp, and grasses. Under some growth conditions, the fungus can accumulate massive stores of hydrocarbon-rich fats and pigments. A community of scientists and engineers has begun genetically modifying R. toruloides to convert these naturally produced fats and pigments into fuels, chemicals and medicines. These could form sustainable replacements for products made from petroleum or harvested from threatened animal and plant species. Fungi, plants, animals and other eukaryotes store fat in specialized compartments called lipid droplets. The genes that control the metabolism – the production, use and storage – of fat in lipid bodies have been studied in certain eukaryotes, including species of yeast. However, R. toruloides is only distantly related to the most well-studied of these species. This means that we cannot be certain that a gene will play the same role in R. toruloides as in those species. To assemble the most comprehensive list possible of the genes in R. toruloides that affect the production, use, or storage of fat in lipid bodies, Coradetti, Pinel et al. constructed a population of hundreds of thousands of mutant fungal strains, each with its own unique DNA ‘barcode’. The effects that mutations in over 6,000 genes had on growth and fat accumulation in these fungi were measured simultaneously in several experiments. This general approach is not new, but technical limitations had, until now, restricted its use in fungi to a few species. Coradetti, Pinel et al. identified hundreds of genes that affected the ability of R. toruloides to metabolise fat. Many of these genes were related to genes with known roles in fat metabolism in other eukaryotes. Other genes are involved in different cell processes, such as the recycling of waste products in the cell. Their identification adds weight to the view that the links between these cellular processes and fat metabolism are deep and widespread amongst eukaryotes. Finally, some of the genes identified by Coradetti, Pinel et al. are not closely related to any well-studied genes. Further study of these genes could help us to understand why R. toruloides can accumulate much larger amounts of fat than most other fungi. The methods developed by Coradetti, Pinel et al. should be possible to implement in many species of fungi. As a result these techniques may eventually contribute to the development of new treatments for human fungal diseases, the protection of important food crops, and a deeper understanding of the roles various fungi play in the broader ecosystem.
Collapse
Affiliation(s)
| | - Dominic Pinel
- Energy Biosciences Institute, Berkeley, United States
| | | | - Masakazu Ito
- Energy Biosciences Institute, Berkeley, United States
| | - Stephen J Mondo
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Morgann C Reilly
- Joint BioEnergy Institute, Emeryville, United States.,Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, United States
| | - Ya-Fang Cheng
- Energy Biosciences Institute, Berkeley, United States
| | - Stefan Bauer
- Energy Biosciences Institute, Berkeley, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Rachel B Brem
- The Buck Institute for Research on Aging, Novato, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Adam P Arkin
- Energy Biosciences Institute, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| | - Jeffrey M Skerker
- Energy Biosciences Institute, Berkeley, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
25
|
Chen H, Hai H, Wang H, Wang Q, Chen M, Feng Z, Ye M, Zhang J. Hydrogen-rich water mediates redox regulation of the antioxidant system, mycelial regeneration and fruiting body development in Hypsizygus marmoreus. Fungal Biol 2018; 122:310-321. [PMID: 29665957 DOI: 10.1016/j.funbio.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/18/2023]
Abstract
Hypsizygus marmoreus is an important industrialized mushroom, yet the lack of basic research on this fungus has hindered further development of its economic value. In this study, mycelia injured by scratching were treated with hydrogen-rich water (HRW) to investigate the involvement of the redox system in fruiting body development. Compared to the control group, damaged mycelia treated with HRW regenerated earlier and showed significantly enhanced fruiting body production. Antioxidant capacity increased significantly in damaged mycelia after HRW treatment, as indicated by higher antioxidant enzyme activities and antioxidant contents; the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) were also reduced at the mycelial regeneration stage after treatment with HRW. Furthermore, genes involved in ROS, Ca2+, MAPK and oxylipin signaling pathways were up-regulated by HRW treatment. In addition, laccase and manganese peroxidase activities and mycelial biomass were higher after HRW treatment, suggesting that HRW might enhance the substrate-degradation rate to provide more carbon sources for fruiting body production.
Collapse
Affiliation(s)
- Hui Chen
- Microbial Resources and Application Laboratory, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China; National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Haibo Hai
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China; College of Life Science, Nanjing Agricultural University, No.1, Weigang Road, XuanWu District, Nanjing, 210095, China.
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhiyong Feng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China; College of Life Science, Nanjing Agricultural University, No.1, Weigang Road, XuanWu District, Nanjing, 210095, China.
| | - Ming Ye
- Microbial Resources and Application Laboratory, School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
26
|
Hooykaas PJJ, van Heusden GPH, Niu X, Reza Roushan M, Soltani J, Zhang X, van der Zaal BJ. Agrobacterium-Mediated Transformation of Yeast and Fungi. Curr Top Microbiol Immunol 2018; 418:349-374. [PMID: 29770864 DOI: 10.1007/82_2018_90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two decades ago, it was discovered that the well-known plant vector Agrobacterium tumefaciens can also transform yeasts and fungi when these microorganisms are co-cultivated on a solid substrate in the presence of a phenolic inducer such as acetosyringone. It is important that the medium has a low pH (5-6) and that the temperature is kept at room temperature (20-25 °C) during co-cultivation. Nowadays, Agrobacterium-mediated transformation (AMT) is the method of choice for the transformation of many fungal species; as the method is simple, the transformation efficiencies are much higher than with other methods, and AMT leads to single-copy integration much more frequently than do other methods. Integration of T-DNA in fungi occurs by non-homologous end-joining (NHEJ), but also targeted integration of the T-DNA by homologous recombination (HR) is possible. In contrast to AMT of plants, which relies on the assistance of a number of translocated virulence (effector) proteins, none of these (VirE2, VirE3, VirD5, VirF) are necessary for AMT of yeast or fungi. This is in line with the idea that some of these proteins help to overcome plant defense. Importantly, it also showed that VirE2 is not necessary for the transport of the T-strand into the nucleus. The yeast Saccharomyces cerevisiae is a fast-growing organism with a relatively simple genome with reduced genetic redundancy. This yeast species has therefore been used to unravel basic molecular processes in eukaryotic cells as well as to elucidate the function of virulence factors of pathogenic microorganisms acting in plants or animals. Translocation of Agrobacterium virulence proteins into yeast was recently visualized in real time by confocal microscopy. In addition, the yeast 2-hybrid system, one of many tools that have been developed for use in this yeast, was used to identify plant and yeast proteins interacting with the translocated Agrobacterium virulence proteins. Dedicated mutant libraries, containing for each gene a mutant with a precise deletion, have been used to unravel the mode of action of some of the Agrobacterium virulence proteins. Yeast deletion mutant collections were also helpful in identifying host factors promoting or inhibiting AMT, including factors involved in T-DNA integration. Thus, the homologous recombination (HR) factor Rad52 was found to be essential for targeted integration of T-DNA by HR in yeast. Proteins mediating double-strand break (DSB) repair by end-joining (Ku70, Ku80, Lig4) turned out to be essential for non-homologous integration. Inactivation of any one of the genes encoding these end-joining factors in other yeasts and fungi was employed to reduce or totally eliminate non-homologous integration and promote efficient targeted integration at the homologous locus by HR. In plants, however, their inactivation did not prevent non-homologous integration, indicating that T-DNA is captured by different DNA repair pathways in plants and fungi.
Collapse
Affiliation(s)
- Paul J J Hooykaas
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - G Paul H van Heusden
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaolei Niu
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - M Reza Roushan
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jalal Soltani
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaorong Zhang
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bert J van der Zaal
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
27
|
Zhang J, Hao H, Chen M, Wang H, Feng Z, Chen H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. AMB Express 2017; 7:107. [PMID: 28565883 PMCID: PMC5449350 DOI: 10.1186/s13568-017-0406-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/18/2017] [Indexed: 02/02/2023] Open
Abstract
In plants, hydrogen gas (H2) enhances tolerance to several abiotic stresses, including salinity and heavy metals. However, the effect of H2 on fungal growth under different stresses remains largely unclear. In this study, hydrogen-rich water (HRW) was employed to characterize physiological roles and molecular mechanisms of H2 in the alleviation of three different stresses in basidiomycete Hypsizygus marmoreus. Our results showed that HRW treatment, of which the H2 concentration was 0.8 mM, significantly reduced the toxicities of CdCl2, NaCl and H2O2, leading to significantly improved mycelial growth and biomass. These beneficial effects could be attributed to a significantly decreased formation of malondialdehyde (MDA). Besides, HRW treatment significantly increased the activities of antioxidants (SOD, CAT and GR) as well as the gene expressions of these antioxidants (SOD, CAT, and GR) at the mRNA level. In vivo detection of reactive oxygen species (ROS), including H2O2 and O2−, as well as lipid peroxidation provided further evidence that HRW could significantly improve tolerances of CdCl2, NaCl and H2O2. Furthermore, pyruvate kinase was activated in the mycelia treated with HRW, along with its induced gene expression, suggesting that HRW treatment enhanced the glucose metabolism. Taken together, our findings suggested that the usage of HRW could be an effective approach for contaminant detoxification in H. marmoreus, which was similar with the effects of HRW in plants, and such effects could be also beneficial in entire agricultural system.
Collapse
|
28
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
29
|
Al-Salihi SAA, Scott TA, Bailey AM, Foster GD. Improved vectors for Agrobacterium mediated genetic manipulation of Hypholoma spp. and other homobasidiomycetes. J Microbiol Methods 2017; 142:4-9. [PMID: 28843436 DOI: 10.1016/j.mimet.2017.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/01/2022]
Abstract
The basidiomycete fungi Hypholoma fasciculare and H. sublateritium are both prolific producers of sesquiterpenes and triterpenes, some of which have relevant pharmaceutical properties. Although H. sublateritium has been transformed in the past, the low reported efficiencies highlighted the need for establishing an effective simple transformation system for these valuable species. We have optimized Agrobacterium tumefaciens-mediated transformation through testing various parameters in these two Hypholoma species, showing that a mixture of homogenized mycelia and Agrobacterium (strain LBA4404) co-cultivated for 84h at 25°C is optimal for efficient transformation in these basidiomycetes. This study also reveals the requirements for transgene expression, with the first report of GFP expression in these Hypholoma, the need for an intron for such transgene expression, and further demonstrates the functionality of the expression vector by its use in Clitopilus passeckerianus. This development of transformation system and expression constructs, can facilitate further genetic investigation such as gene functionality in these fungi.
Collapse
Affiliation(s)
- Suhad A A Al-Salihi
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Thomas A Scott
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Andy M Bailey
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK
| | - Gary D Foster
- Molecular Plant Pathology and Fungal Biology Group, University of Bristol, School of Biological Sciences, 24 Tyndall Avenue Bristol, BS8 1TQ, UK.
| |
Collapse
|
30
|
A simple and efficient method for successful gene silencing of HspA1 in Trametes hirsuta AH28-2. Antonie van Leeuwenhoek 2017; 110:1527-1535. [DOI: 10.1007/s10482-017-0904-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/27/2017] [Indexed: 01/13/2023]
|
31
|
Shi L, Chen D, Xu C, Ren A, Yu H, Zhao M. Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes. J GEN APPL MICROBIOL 2017; 63:179-185. [PMID: 28484117 DOI: 10.2323/jgam.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flammulina velutipes is a well-known edible mushroom cultivated all over the world. However, because of the low transformation frequency, the expensive instruments required, and the complicated, time-consuming procedures necessary, there is insufficient genetic research on F. velutipes. In this study, we report a liposome-mediated transformation (LMT) system for the genetic transformation of F. velutipes. Using the LMT system, we obtained 82 ± 4 stable F. velutipes transformants per 105 protoplasts, which is a clear increase in transformation frequency compared to the other methods used. We were able to detect the expression of an EGFP reporter gene in the F. velutipes transformants using fluorescence imaging assays. Furthermore, we used this method to transfer the laccase gene into F. velutipes and found that the transcriptional level and enzymatic activity increased in these transformants. Mitotic stability analysis showed that all of the selected transformants remained mitotically stable, even after five successive rounds of sub-culturing. These results demonstrate a new transgenic approach that will facilitate F. velutipes research.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| | - Dongdong Chen
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| | - Chao Xu
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| | - Hanshou Yu
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture
| |
Collapse
|
32
|
|
33
|
Zhang J, Chen H, Chen M, Wang H, Song X, Feng Z. Construction and application of a gene silencing system using a dual promoter silencing vector in Hypsizygus marmoreus. J Basic Microbiol 2016; 57:78-86. [PMID: 27577540 DOI: 10.1002/jobm.201600291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022]
Abstract
As efficient reverse genetic tools are lacking, molecular genetics research has been limited in Hypsizygus marmoreus. In this study, we firstly constructed a gene-silencing method using a dual promoter vector (DPV) which was driven by gpd and 35 S promoters. The DPV was introduced into H. marmoreus via a simple electroporation procedure and the highest silenced rate of ura3 gene was 76.6%, indicating that the DPV might be suitable for gene silencing in basidiomycete. In this silencing system, the endogenous orotidine 5'-monophosphate decarboxylase gene (ura3) was used as a selectable marker. Besides, we also constructed another silencing system which could silence the ura3 and other genes (lcc1 encoded laccase1) together in H. marmoreus, and named it as co-silencing system. In the co-silenced transformants, we found that the mycelia were thinner and the growth was slower than in the wild-type and control2 strains, which was accordant with the previous study of lcc1 gene, indicating that the selective efficiency of the RNAi-mediated silencing of several genes might be increased by co-silencing ura3. The development of this molecular tool might improve functional studies of multiple genes in the basidiomycete H. marmoreus and also provide a reference for studies of other basidiomycetes.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China
| | - Xiaoxia Song
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, FenXian District, Shanghai, People's Republic of China.,College of Life Science, Nanjing Agricultural University, XuanWu District, Nanjing, People's Republic of China
| |
Collapse
|
34
|
Xu X, Li J, Shi P, Ji W, Liu B, Zhang Y, Yao B, Fan Y, Zhang W. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Sci Rep 2016; 6:31108. [PMID: 27506519 PMCID: PMC4979032 DOI: 10.1038/srep31108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/106 conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengjun Shi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
35
|
Stephan BI, Alvarez Crespo MC, Kemppainen MJ, Pardo AG. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor. Curr Genet 2016; 63:215-227. [PMID: 27387518 DOI: 10.1007/s00294-016-0627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.
Collapse
Affiliation(s)
- B I Stephan
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M C Alvarez Crespo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - A G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
36
|
Zhang J, Chen H, Chen M, Ren A, Huang J, Wang H, Zhao M, Feng Z. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiol Res 2015; 179:54-63. [PMID: 26411895 DOI: 10.1016/j.micres.2015.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The Hypsizygus marmoreus laccase gene (lcc1) sequence was cloned and analyzed. The genomic DNA of lcc1 is 2336 bp, comprising 13 introns and 14 exons. The 1626-bp full-length cDNA encodes a mature laccase protein containing 542 amino acids, with a 21-amino acid signal peptide. Phylogenetic analysis showed that the lcc1 amino acid sequence is homologous to basidiomycete laccases and shares the highest similarity with Flammulina velutipes laccase. A 2021-bp promoter sequence containing a TATA box, CAAT box, and several putative cis-acting elements was also identified. To study the function of lcc1, we first overexpressed lcc1 in H. marmoreus and found that the transgenic fungus producing recombinant laccase displayed faster mycelial growth than the wild-type (wt) strain. Additionally, primordium initiation was induced 3-5 days earlier in the transgenic fungus, and fruiting body maturation was also promoted approximately five days earlier than in the wt strain. Furthermore, we detected that lcc1 was sustainably overexpressed and that laccase activity was also higher in the transgenic strains compared with the wt strain during development in H. marmoreus. These results indicate that the H. marmoreus lcc1 gene is involved in mycelial growth and fruiting body initiation by increasing laccase activity.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Ang Ren
- College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China
| | - Jianchun Huang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Mingwen Zhao
- College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China; College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China.
| |
Collapse
|
37
|
Zhang J, Ren A, Chen H, Zhao M, Shi L, Chen M, Wang H, Feng Z. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS One 2015; 10:e0123025. [PMID: 25837428 PMCID: PMC4383556 DOI: 10.1371/journal.pone.0123025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023] Open
Abstract
To elucidate the mechanisms of fruit body development in H. marmoreus, a total of 43609521 high-quality RNA-seq reads were obtained from four developmental stages, including the mycelial knot (H-M), mycelial pigmentation (H-V), primordium (H-P) and fruiting body (H-F) stages. These reads were assembled to obtain 40568 unigenes with an average length of 1074 bp. A total of 26800 (66.06%) unigenes were annotated and analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Eukaryotic Orthologous Group (KOG) databases. Differentially expressed genes (DEGs) from the four transcriptomes were analyzed. The KEGG enrichment analysis revealed that the mycelium pigmentation stage was associated with the MAPK, cAMP, and blue light signal transduction pathways. In addition, expression of the two-component system members changed with the transition from H-M to H-V, suggesting that light affected the expression of genes related to fruit body initiation in H. marmoreus. During the transition from H-V to H-P, stress signals associated with MAPK, cAMP and ROS signals might be the most important inducers. Our data suggested that nitrogen starvation might be one of the most important factors in promoting fruit body maturation, and nitrogen metabolism and mTOR signaling pathway were associated with this process. In addition, 30 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study advances our understanding of the molecular mechanism of fruiting body development in H. marmoreus by identifying a wealth of new genes that may play important roles in mushroom morphogenesis.
Collapse
Affiliation(s)
- Jinjing Zhang
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ang Ren
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingwen Zhao
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Liang Shi
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Feng
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
38
|
Kim S, Ha BS, Ro HS. Current technologies and related issues for mushroom transformation. MYCOBIOLOGY 2015; 43:1-8. [PMID: 25892908 PMCID: PMC4397374 DOI: 10.5941/myco.2015.43.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration.
Collapse
Affiliation(s)
- Sinil Kim
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Byeong-Suk Ha
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyeon-Su Ro
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
39
|
Cell Factories of Higher Fungi for Useful Metabolite Production. BIOREACTOR ENGINEERING RESEARCH AND INDUSTRIAL APPLICATIONS I 2015; 155:199-235. [DOI: 10.1007/10_2015_335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Kim KH, Kang YM, Im CH, Ali A, Kim SY, Je HJ, Kim MK, Rho HS, Lee HS, Kong WS, Ryu JS. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 2014; 9:e104693. [PMID: 25133513 PMCID: PMC4136793 DOI: 10.1371/journal.pone.0104693] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Young Min Kang
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Chak Han Im
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Asjad Ali
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Sun Young Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Hee-Jeong Je
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Min-Keun Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Hyun Su Rho
- Department of Microbiology, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sook Lee
- Department of Microbiology, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Republic of Korea
| | - Jae-San Ryu
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|