1
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Gutiérrez-Lomelí M. Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights. Antibiotics (Basel) 2024; 13:1039. [PMID: 39596734 PMCID: PMC11591142 DOI: 10.3390/antibiotics13111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance to antibiotics, benzalkonium chloride (BC), and cadmium chloride (CdCl2); and its biofilm formation. METHODS A total of 132 fresh fruits (44 samples) and vegetables (88 samples) were selected for this study. The genetic diversity of the isolates and the genes associated with their antibiotic resistance were determined using PCR amplification; meanwhile, their levels of susceptibility to antibiotics were determined using the agar diffusion method. Their levels of resistance to BC and CdCl2 were determined using the minimum inhibitory concentration method, and their capacity for biofilm formation was evaluated using the crystal violet staining method. RESULTS A total of 17 L. monocytogenes strains were collected: 12.8% (17/132) from fresh fruits and vegetables in this study. The isolates of L. monocytogenes belonged to phylogenetic groups I.1 (29.4% (5/17); serotype 1/2a) and II.2 (70.5% (12/17); serotype 1/2b); strains containing Listeria pathogenicity islands (LIPIs) were also identified at prevalence rates of 100% for LIPI-1 and LIPI-2 (17/17), 29.4% for LIPI-3 (5/17), and 11.7% for LIPI-4 (2/17). The antibiotic susceptibility tests showed that the L. monocytogenes isolates exhibited six different multiresistant patterns, with multiple antibiotic resistance (MAR) index of ≥0.46 (70.5%; 12/17); additionally, the genes Ide, tetM, and msrA, associated with efflux pump Lde, tetracycline, and ciprofloxacin resistance, were detected at 52.9% (9/17), 29.4% (5/17), and 17.6% (3/17), respectively. The phenotypic tests showed that 58.8% (10/17) of cadmium-resistant L. monocytogenes isolates had a co-resistance of 23.5% (4/17) to BC. Finally, all strains of L. monocytogenes exhibited moderate biofilm production. CONCLUSIONS The results of this study contribute to our understanding of the persistence and genetic diversity of L. monocytogenes strains isolated from fresh fruits and vegetables; in addition, their resistance to CdCl2, which is correlated with co-resistance to BC disinfectant, is helpful for the food industry.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| |
Collapse
|
2
|
Ferreira CM, Naveca FG, Ferreira GMA, Barbosa MDNS, de Souza VC, Calheiros FO, Souza VS, Ferreira WA. Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin's Lymphoma. Genes (Basel) 2024; 15:814. [PMID: 38927749 PMCID: PMC11202416 DOI: 10.3390/genes15060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2″)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.
Collapse
Affiliation(s)
- Cristina Motta Ferreira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas—HEMOAM, Av. Constantino Nery, 4397, Chapada, Manaus 69050-001, Amazonas, Brazil
| | - Felipe Gomes Naveca
- Instituto Leônidas e Maria Deane—FIOCRUZ, Rua Teresina, 476, Adrianópolis, Manaus 69027-070, Amazonas, Brazil
| | - Guilherme Motta Antunes Ferreira
- Programa de Pós-Graduação em Hematologia, Universidade do Estado do Amazonas—PPGH-UEA/HEMOAM, Av. Constantino Nery, 4397, Chapada, Manaus 69050-001, Amazonas, Brazil
| | - Maria de Nazaré Saunier Barbosa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas—HEMOAM, Av. Constantino Nery, 4397, Chapada, Manaus 69050-001, Amazonas, Brazil
| | - Victor Costa de Souza
- Instituto Leônidas e Maria Deane—FIOCRUZ, Rua Teresina, 476, Adrianópolis, Manaus 69027-070, Amazonas, Brazil
| | - Franceline Oliveira Calheiros
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas—HEMOAM, Av. Constantino Nery, 4397, Chapada, Manaus 69050-001, Amazonas, Brazil
| | - Vander Silva Souza
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas—HEMOAM, Av. Constantino Nery, 4397, Chapada, Manaus 69050-001, Amazonas, Brazil
| | - William Antunes Ferreira
- Fundação de Dermatologia Tropical e Venereologia Alfredo da Matta—FUAM, Rua Codajás, 24, Cachoeirinha, Manaus 69065-130, Amazonas, Brazil;
| |
Collapse
|
3
|
Wang Y, Meng F, Deng X, Yang Y, Li S, Jiao X, Li S, Liu M. Genomic epidemiology of hypervirulent Listeria monocytogenes CC619: Population structure, phylodynamics and virulence. Microbiol Res 2024; 280:127591. [PMID: 38181481 DOI: 10.1016/j.micres.2023.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen causing human and animal listeriosis with high mortality. Neurological and maternal-neonatal listeriosis outbreaks in Europe and the United States were frequently associated with clonal complexes CC1, CC2 and CC6 harboring Listeria Pathogenicity Island-1 (LIPI-1), as well as CC4 carrying both LIPI-1 and LIPI-4. However, human listeriosis in China was predominantly linked to CC87 and CC619 from serotype 1/2b. To understand the genetic evolution and distribution patterns of CC619, we characterized the epidemic history, population structure, and transmission feature of CC619 strains through analysis of 49,421 L. monocytogenes genomes globally. We found that CC619 was uniquely distributed in China, and closely related with perinatal infection. As CC619 strains were being mainly isolated from livestock and poultry products, we hypothesized that pigs and live chicken were the reservoirs of CC619. Importantly, all CC619 strains not only harbored the intact LIPI-1 and LIPI-4, but these also carried LIPI-3 that could facilitate host colonization and invasion. The deficiency of LIPI-3 or LIPI-4 markedly decreased L. monocytogenes colonization capacity in a model of intragastric infection in the mouse. Altogether, our findings suggest that the hypervirulent CC619 harboring three pathogenicity islands LIPI-1, LIPI-3 and LIPI-4 is a putatively persistent population in various foods, environment, and human population, warranting the further research for deciphering its pathogenicity and strengthening epidemiological surveillance.
Collapse
Affiliation(s)
- Yiqian Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xia Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuheng Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shaoting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
5
|
Rehan M, Alhusays A, Serag AM, Boubakri H, Pujic P, Normand P. The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Application and challenge of bacteriophage in the food protection. Int J Food Microbiol 2022; 380:109872. [PMID: 35981493 DOI: 10.1016/j.ijfoodmicro.2022.109872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years, foodborne diseases caused by pathogens have been increasing. Therefore, it is essential to control the growth and transmission of pathogens. Bacteriophages (phages) have the potential to play an important role in the biological prevention, control, and treatment of these foodborne diseases due to their favorable advantages. Phages not only effectively inhibit pathogenic bacteria and prolong the shelf life of food, but also possess the advantages of specificity and an absence of chemical residues. Currently, there are many cases of phage applications in agriculture, animal disease prevention and control, food safety, and the treatment of drug-resistant disease. In this review, we summarize the recent research progress on phages against foodborne pathogenic bacteria, including Escherichia coli, Salmonella, Campylobacter, Listeria monocytogenes, Shigella, Vibrio parahaemolyticus, and Staphylococcus aureus. We also discuss the main issues and their corresponding solutions in the application of phages in the food industry. In recent years, although researchers have discovered more phages with potential applications in the food industry, most researchers use these phages based on their host spectrum, and the application environment is mostly in the laboratory. Therefore, the practical application of these phages in different aspects of the food industry may be unsatisfactory and even have some negative effects. Thus, we suggest that before using these phages, it is necessary to identify their specific receptors. Using their specific receptors as the selection basis for their application and combining phages with other phages or phages with traditional antibacterial agents may further improve their safety and application efficiency. Collectively, this review provides a theoretical reference for the basic research and application of phages in the food industry.
Collapse
|
7
|
Chen J, Wang L, Li W, Zheng X, Li X. Genomic Insights Into Cadmium Resistance of a Newly Isolated, Plasmid-Free Cellulomonas sp. Strain Y8. Front Microbiol 2022; 12:784575. [PMID: 35154027 PMCID: PMC8832061 DOI: 10.3389/fmicb.2021.784575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Our current knowledge on bacterial cadmium (Cd) resistance is mainly based on the functional exploration of specific Cd-resistance genes. In this study, we carried out a genomic study on Cd resistance of a newly isolated Cellulomonas strain with a MIC of 5 mM Cd. Full genome of the strain, with a genome size of 4.47 M bp and GC-content of 75.35%, was obtained through high-quality sequencing. Genome-wide annotations identified 54 heavy metal-related genes. Four potential Cd-resistance genes, namely zntAY8, copAY8, HMTY8, and czcDY8, were subjected to functional exploration. Quantitative PCR determination of in vivo expression showed that zntAY8, copAY8, and HMTY8 were strongly Cd-inducible. Expression of the three inducible genes against time and Cd concentrations were further quantified. It is found that zntAY8 responded more strongly to higher Cd concentrations, while expression of copAY8 and HMTY8 increased over time at lower Cd concentrations. Heterologous expression of the four genes in Cd-sensitive Escherichia coli led to different impacts on hosts’ Cd sorption, with an 87% reduction by zntAY8 and a 3.7-fold increase by HMTY8. In conclusion, a Cd-resistant Cellulomonas sp. strain was isolated, whose genome harbors a diverse panel of metal-resistance genes. Cd resistance in the strain is not controlled by a dedicated gene alone, but by several gene systems collectively whose roles are probably time- and dose-dependent. The plasmid-free, high-GC strain Y8 may provide a platform for exploring heavy metal genomics of the Cellulomonas genus.
Collapse
Affiliation(s)
- Jinghao Chen
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Xiaofang Li,
| |
Collapse
|
8
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
9
|
Long S, Tong H, Zhang X, Jia S, Chen M, Liu C. Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Front Microbiol 2021; 12:665090. [PMID: 34054770 PMCID: PMC8155521 DOI: 10.3389/fmicb.2021.665090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.
Collapse
Affiliation(s)
- Shengqiao Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Hypo- and Hyper-Virulent Listeria monocytogenes Clones Persisting in Two Different Food Processing Plants of Central Italy. Microorganisms 2021; 9:microorganisms9020376. [PMID: 33668440 PMCID: PMC7918772 DOI: 10.3390/microorganisms9020376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm.
Collapse
|
11
|
Gelbicova T, Florianova M, Hluchanova L, Kalova A, Korena K, Strakova N, Karpiskova R. Comparative Analysis of Genetic Determinants Encoding Cadmium, Arsenic, and Benzalkonium Chloride Resistance in Listeria monocytogenes of Human, Food, and Environmental Origin. Front Microbiol 2021; 11:599882. [PMID: 33519740 PMCID: PMC7840573 DOI: 10.3389/fmicb.2020.599882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.
Collapse
Affiliation(s)
- Tereza Gelbicova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Martina Florianova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Lucie Hluchanova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia.,Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Alžběta Kalova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Kristýna Korena
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Nicol Strakova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia
| | - Renáta Karpiskova
- Department of Microbiology and Antibiotic Resistance, Veterinary Research Institute, Brno, Czechia.,Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| |
Collapse
|
12
|
Leungtongkam U, Thummeepak R, Kitti T, Tasanapak K, Wongwigkarn J, Styles KM, Wellington EMH, Millard AD, Sagona AP, Sitthisak S. Genomic analysis reveals high virulence and antibiotic resistance amongst phage susceptible Acinetobacter baumannii. Sci Rep 2020; 10:16154. [PMID: 32999368 PMCID: PMC7528101 DOI: 10.1038/s41598-020-73123-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we examined the association between antimicrobial resistance, CRISPR/Cas systems and virulence with phage susceptibility in Acinetobacter baumannii and investigated draft genomes of phage susceptible multidrug resistant A. baumannii strains from Thailand. We investigated 230 A. baumannii strains using 17 lytic A. baumannii phages and the phage susceptibility was 46.5% (107/230). Phage susceptibility was also associated with resistance to numerous antibiotics (p-value < 0.05). We also found association between biofilm formation and the presence of ompA gene among phage susceptible A. baumannii strains (p-value < 0.05). A. baumannii isolates carrying cas5 or combinations of two or three other cas genes, showed a significant increase in phage resistance. Whole-genome sequences of seven phage susceptible A. baumannii isolates revealed that six groups of antibiotic resistance genes were carried by all seven phage susceptible A. baumannii. All strains carried biofilm associated genes and two strains harbored complete prophages, acquired copper tolerance genes, and CRISPR-associated (cas) genes. In conclusion, our data exhibits an association between virulence determinants and biofilm formation among phage susceptible A. baumannii strains. These data help to understand the bacterial co-evolution with phages.
Collapse
Affiliation(s)
- Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thawatchai Kitti
- Faculty of Oriental Medicine, Chiang Rai College, Chiang Rai, 57000, Thailand
| | - Kannipa Tasanapak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jintana Wongwigkarn
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kathryn M Styles
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
13
|
Haubert L, Zehetmeyr ML, da Silva WP. Resistance to benzalkonium chloride and cadmium chloride in Listeria monocytogenes isolates from food and food-processing environments in southern Brazil. Can J Microbiol 2019; 65:429-435. [DOI: 10.1139/cjm-2018-0618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Maiara Lindemann Zehetmeyr
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
14
|
Zhang H, Hu Y, Zhou C, Yang Z, Wu L, Zhu M, Bao H, Zhou Y, Pang M, Wang R, Zhou X. Stress resistance, motility and biofilm formation mediated by a 25kb plasmid pLMSZ08 in Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Luque-Sastre L, Arroyo C, Fox EM, McMahon BJ, Bai L, Li F, Fanning S. Antimicrobial Resistance in Listeria Species. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0031-2017. [PMID: 30027884 PMCID: PMC11633604 DOI: 10.1128/microbiolspec.arba-0031-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus Listeria currently comprises 17 recognized species found throughout the environment. Listeria monocytogenes is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas Listeria ivanovii causes infections mainly in ruminants. L. monocytogenes is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.
Collapse
Affiliation(s)
- Laura Luque-Sastre
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Cristina Arroyo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, Victoria, Australia
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
16
|
Rychli K, Wagner EM, Ciolacu L, Zaiser A, Tasara T, Wagner M, Schmitz-Esser S. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLoS One 2017; 12:e0176857. [PMID: 28472116 PMCID: PMC5417603 DOI: 10.1371/journal.pone.0176857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
The food-borne pathogen Listeria (L.) monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST)121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins—including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA) gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Eva M. Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Taurai Tasara
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
- * E-mail:
| |
Collapse
|
17
|
Zhang H, Li L, Zhao Z, Peng D, Zhou X. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection. Sci Rep 2016; 6:26147. [PMID: 27189325 PMCID: PMC4870561 DOI: 10.1038/srep26147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/28/2016] [Indexed: 01/16/2023] Open
Abstract
Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.,Department of Pathobiology &Veterinary Science, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA.,Center of Excellence for Vaccine Research, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA
| | - Lu Li
- Department of Pathobiology &Veterinary Science, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA.,Center of Excellence for Vaccine Research, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA
| | - Zhe Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xiaohui Zhou
- Department of Pathobiology &Veterinary Science, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA.,Center of Excellence for Vaccine Research, The University of Connecticut, 61 N. Eagleville Road, Storrs, CT 06269-3089, USA
| |
Collapse
|
18
|
Martínez-Suárez JV, Ortiz S, López-Alonso V. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments. Front Microbiol 2016; 7:638. [PMID: 27199964 PMCID: PMC4852299 DOI: 10.3389/fmicb.2016.00638] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
The persistence of certain strains of Listeria monocytogenes, even after the food processing environment has been cleaned and disinfected, suggests that this may be related to phenomena that reduce the concentration of the disinfectants to subinhibitory levels. This includes (i) the existence of environmental niches or reservoirs that are difficult for disinfectants to reach, (ii) microorganisms that form biofilms and create microenvironments in which adequate concentrations of disinfectants cannot be attained, and (iii) the acquisition of resistance mechanisms in L. monocytogenes, including those that lead to a reduction in the intracellular concentration of the disinfectants. The only available data with regard to the resistance of L. monocytogenes to disinfectants applied in food production environments refer to genotypic resistance to quaternary ammonium compounds (QACs). Although there are several well-characterized efflux pumps that confer resistance to QACs, it is a low-level resistance that does not generate resistance to QACs at the concentrations applied in the food industry. However, dilution in the environment and biodegradation result in QAC concentration gradients. As a result, the microorganisms are frequently exposed to subinhibitory concentrations of QACs. Therefore, the low-level resistance to QACs in L. monocytogenes may contribute to its environmental adaptation and persistence. In fact, in certain cases, the relationship between low-level resistance and the environmental persistence of L. monocytogenes in different food production chains has been previously established. The resistant strains would have survival advantages in these environments over sensitive strains, such as the ability to form biofilms in the presence of increased biocide concentrations.
Collapse
Affiliation(s)
- Joaquín V. Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Sagrario Ortiz
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
19
|
Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 2016; 100:2967-84. [PMID: 26860944 DOI: 10.1007/s00253-016-7364-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.
Collapse
|
20
|
Jiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, Zhou L. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 2016; 217:141-5. [DOI: 10.1016/j.ijfoodmicro.2015.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
|
21
|
Xu D, Nie Q, Wang W, Shi L, Yan H. Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin. Int J Food Microbiol 2015; 217:117-22. [PMID: 26513251 DOI: 10.1016/j.ijfoodmicro.2015.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022]
Abstract
In this study, we characterized a bcrABC cassette and its genetic environment harbored by a plasmid in Listeria monocytogenes (L. monocytogenes) 11GZL18, a strain isolated from raw meat in 2011. The bcrABC cassette and its genetic environment were characterized, with a total of 33,727 nt nucleotide sequence obtained. The nucleotide sequences of the bcrABC cassette in strain 11GZL18 exhibited 100% identity to that on plasmid pLM80, which is harbored by L. monocytogenes strain H7550 and H7858, and the neighboring 21,678 nt nucleotide sequence of bcrABC cassette showed 99% identity with plasmid pLM80. The plasmid curing experiment demonstrated the role of the plasmid in conferring benzalkonium chloride (BC) and cadmium (Cd) tolerance in this strain. The bcrABC cassette and cadAC genes from the L. monocytogenes 11GZL18 were harbored by plasmid, functional and transmissible, and led to the acquired tolerance in Gram-negative Escherichia coli (E. coli) DH5α by chemical and natural transformation. Besides, the efflux pump activity that is conferring tolerance to BC and Cd was observed in strain 11GZL18, while not in a plasmid-cured strain 11GZL18-C, confirming that efflux pumps play a role in plasmid-mediated tolerance to BC and Cd in L. monocytogenes 11GZL18. In this study we characterized the genetic organization of a novel BC and Cd tolerance determinants-harboring plasmid in a L. monocytogenes strain isolated from raw meat of animal origin, and demonstrated the potential horizontal transferability of this bcrABC cassette-harboring plasmid to E. coli. The findings will further improve our understanding of the adaptations of this organism to disinfectants such as BC and may contribute to elucidating possible dissemination of BC tolerance in foodborne L. monocytogenes.
Collapse
Affiliation(s)
- Dongyang Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Qing Nie
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenyan Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lei Shi
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China; Graduate School of Life and Environment Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - He Yan
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|