1
|
Da Silva E, Martín-Cano FE, Gómez-Arrones V, Gaitskell-Phillips G, Alonso JM, Rey J, Becerro L, Gil MC, Peña FJ, Ortega-Ferrusola C. Bacterial endometritis-induced changes in the endometrial proteome in mares: Potential uterine biomarker for bacterial endometritis. Theriogenology 2024; 226:202-212. [PMID: 38909435 DOI: 10.1016/j.theriogenology.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Equine endometritis is one of the main causes of subfertility in the mare. Unraveling the molecular mechanisms involved in this condition and pinpointing proteins with biomarker potential could be crucial in both diagnosing and treating this condition. This study aimed to identify the endometritis-induced changes in the endometrial proteome in mares and to elucidate potential biological processes in which these proteins may be involved. Secondly, biomarkers related to bacterial endometritis (BE) in mares were identified. Uterine lavage fluid samples were collected from 28 mares (14 healthy: negative cytology and culture, and no clinical signs and 14 mares with endometritis: positive cytology and culture, in addition to clinical signs). Proteomic analysis was performed with a UHPLC-MS/MS system and bioinformatic analysis was carried out using Qlucore Omics Explorer. Gene Ontology enrichment and pathway analysis (PANTHER and KEGG) of the uterine proteome were performed to identify active biological pathways in enriched proteins from each group. Quantitative analysis revealed 38 proteins differentially abundant in endometritis mares when compared to healthy mares (fold changes >4.25, and q-value = 0.002). The proteins upregulated in the secretome of mares with BE were involved in biological processes related to the generation of energy and REDOX regulation and to the defense response to bacterium. A total of 24 biomarkers for BE were identified using the biomarker workbench algorithm. Some of the proteins identified were related to the innate immune system such as isoforms of histones H2A and H2B involvement in neutrophil extracellular trap (NET) formation, complement C3a, or gelsolin and profilin, two actin-binding proteins which are essential for dynamic remodeling of the actin cytoskeleton during cell migration. The other group of biomarkers were three known antimicrobial peptides (lysosome, equine cathelicidin 2 and myeloperoxidase (MPO)) and two uncharacterized proteins with a high homology with cathelicidin families. Findings in this study provide the first evidence that innate immune cells in the equine endometrium undergo reprogramming of metabolic pathways similar to the Warburg effect during activation. In addition, biomarkers of BE in uterine fluid of mares including the new proteins identified, as well as other antimicrobial peptides already known, offer future lines of research for alternative treatments to antibiotics.
Collapse
Affiliation(s)
- E Da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - F E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - V Gómez-Arrones
- CENSYRA, Centro de Selección y Reproducción Animal de Extremadura, Badajoz, Spain
| | - G Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - J M Alonso
- Unit of Infectious Diseases, University of Extremadura, Caceres, Spain
| | - J Rey
- Unit of Infectious Diseases, University of Extremadura, Caceres, Spain
| | - L Becerro
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - M C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - F J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
2
|
Gil-Miranda A, Macnicol J, Orellana-Guerrero D, Samper JC, Gomez DE. Reproductive Tract Microbiota of Mares. Vet Sci 2024; 11:324. [PMID: 39058008 PMCID: PMC11281493 DOI: 10.3390/vetsci11070324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The female reproductive tract microbiota is a complex community of microorganisms that might be crucial in maintaining a healthy reproductive environment. Imbalances in the bacterial community (dysbiosis) and the reduction of beneficial organisms and pathogen proliferation are associated with disease. Endometritis is a common cause of fertility problems in mares, and it is still challenging to diagnose and treat based on routine culture results of certain microorganisms. Although high-throughput sequencing studies provide helpful information regarding the composition of the reproductive tract microbiota in mares, there are still challenges in defining a "normal" microbiota. The primary objective of this literature review is to summarize the current knowledge regarding the microbiota present in the reproductive tract of mares, including the vagina, cervix, and uterus. The second objective is to describe the relevant factors that can impact the reproductive microbiota of mares, including the estrous cycle stage, the type of species (genera) investigated, season, and geographic location. The rationality of identifying the normal microbiota in the reproductive tract of a mare will likely aid in understanding the impact of the microbiota on the host's reproductive health and contribute to the treatment and prevention of equine sub and infertility issues.
Collapse
Affiliation(s)
- Ana Gil-Miranda
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| | - Jennifer Macnicol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| | | | - Juan C. Samper
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4475, USA;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| |
Collapse
|
3
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
4
|
Shu G, Gan T, Lin Z, Liu Y, Chen J, Wang C, Deng L, Li C, Chang LJ, Zhang W, Li H, Xu F, Fu H, Lin J. The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116395. [PMID: 38728939 DOI: 10.1016/j.ecoenv.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum β-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum β-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different β-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.
Collapse
Affiliation(s)
- Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ting Gan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziqin Lin
- The Chinese university of Hongkong (Shenzhen), Faculty of Medicine, Shenzhen 518172, PR China
| | - Ying Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jingyi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan 610081, PR China
| | - Linhua Deng
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan 610081, PR China
| | - Caiwu Li
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan 610081, PR China
| | - Li-Jen Chang
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, WA 20541, USA
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Haohuan Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Funeng Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hualing Fu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
5
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Yan Z, He X, Ayala J, Xu Q, Yu X, Hou R, Yao Y, Huang H, Wang H. The Impact of Bamboo Consumption on the Spread of Antibiotic Resistance Genes in Giant Pandas. Vet Sci 2023; 10:630. [PMID: 37999453 PMCID: PMC10675626 DOI: 10.3390/vetsci10110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the environment exacerbates the contamination of these genes; therefore, the role plants play in the transmission of resistance genes in the food chain requires further research. Giant pandas consume different bamboo parts at different times, which provides the possibility of investigating how a single food source can affect the variation in the spread of ARGs. In this study, metagenomic analysis and the Comprehensive Antibiotic Resistance Database (CARD) database were used to annotate ARGs and the differences in gut microbiota ARGs during the consumption of bamboo shoots, leaves, and culms by captive giant pandas. These ARGs were then compared to investigate the impact of bamboo part consumption on the spread of ARGs. The results showed that the number of ARGs in the gut microbiota of the subjects was highest during the consumption of bamboo leaves, while the variety of ARGs was highest during the consumption of shoots. Escherichia coli, which poses a higher risk of ARG dissemination, was significantly higher in the leaf group, while Klebsiella, Enterobacter, and Raoultella were significantly higher in the shoot group. The ARG risk brought by bamboo shoots and leaves may originate from soil and environmental pollution. It is recommended to handle the feces of giant pandas properly and regularly monitor the antimicrobial and virulence genes in their gut microbiota to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Zheng Yan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin He
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - James Ayala
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Xiaoqiang Yu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
7
|
Thomson P, García P, del Río C, Castro R, Núñez A, Miranda C. Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Genes in Enterobacterales, Pseudomonas and Acinetobacter Isolates from the Uterus of Healthy Mares. Pathogens 2023; 12:1145. [PMID: 37764953 PMCID: PMC10535638 DOI: 10.3390/pathogens12091145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic-resistant bacteria are a growing concern for human and animal health. The objective of this study was to determine the antimicrobial resistance and extended-spectrum beta-lactamase genes in Enterobacterales, Pseudomonas spp. and Acinetobacter spp. isolates from the uterus of healthy mares. For this purpose, 21 mares were swabbed for samples, which were later seeded on blood agar and MacConkey agar. The isolates were identified using MALDI-TOF and the antimicrobial susceptibility test was performed using the Kirby-Bauer technique. To characterize the resistance genes, a polymerase chain reaction (PCR) scheme was performed. Of the isolates identified as Gram-negative, 68.8% were Enterobacterales, represented by E. coli, Enterobacter cloacae, Citrobacter spp., and Klebsiella pneumoniae; 28.1% belonged to the genus Acinetobacter spp.; and 3.1% to Pseudomonas aeruginosa. A 9.3% of the isolates were multidrug-resistant (MDR), presenting resistance to antibiotics from three different classes, while 18.8% presented resistance to two or more classes of different antibiotics. The diversity of three genes that code for ESBL (blaTEM, blaCTX-M and blaSHV) was detected in 12.5% of the strains. The most frequent was blaSHV, while blaTEM and blaCTX-M were present in Citrobacter spp. and Klebsiella pneumoniae. These results are an alarm call for veterinarians and their environment and suggest taking measures to prevent the spread of these microorganisms.
Collapse
Affiliation(s)
- Pamela Thomson
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile;
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica, Santiago 8940000, Chile;
| | - Camila del Río
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile;
| | - Rodrigo Castro
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 3473620, Chile
| | - Andrea Núñez
- Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Curicó 3340000, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago 7500975, Chile
| | - Carolina Miranda
- Laboratorio de Microbiología Red de Salud UC-CHRISTUS, Pontificia Universidad Católica, Santiago 8940000, Chile;
| |
Collapse
|
8
|
Pereida-Aguilar JC, Barragán-Vargas C, Domínguez-Sánchez C, Álvarez-Martínez RC, Acevedo-Whitehouse K. Bacterial dysbiosis and epithelial status of the California sea lion (Zalophus californianus) in the Gulf of California. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105474. [PMID: 37356747 DOI: 10.1016/j.meegid.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Despite the high incidence of urogenital carcinoma (UGC) in California sea lions stranded along California, no UGC has been reported in other areas of their distribution; however, cell morphologies typical of premalignant states have been found. Risk factors for UGC include high of organochlorines and infection with a gammaherpesvirus, OtHV-1, but the importance of the bacteriome for epithelial status remains unknown. We characterized the genital bacteriome of adult female California sea lions along their distribution in the Gulf of California and examined whether the diversity and abundance of the bacteriome varied spatially, whether there were detectable differences in the bacteriome between healthy and altered epithelia, and whether the bacteriome was different in California sea lions infected with OtHV-1 or papillomavirus. We detected 2270 ASVs in the genital samples, of which 35 met the criteria for inclusion in the core bacteriome. Fusobacteriia and Clostridia were present in all samples, at high abundances, and Actinobacteria, Alphaproteobacteria, and Campylobacteria were also well-represented. Alpha diversity and abundance of the California sea lion genital bacteriome varied geographically. The abundance of bacterial ASVs varied depending on the genital epithelial status and inflammation, with differences driven by classes Fusobacteriia, Clostridia, Campylobacteria and Alphaproteobacteria. Alpha diversity and abundance were lowest in samples in which OtHV-1 was detected, and highest those with papillomavirus. Our study is the first investigation of how the bacteriome is related to epithelial status in a wild marine species prone to developing cancer.
Collapse
Affiliation(s)
- Juan Carlos Pereida-Aguilar
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Carlos Domínguez-Sánchez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Roberto Carlos Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico.
| |
Collapse
|
9
|
van Heule M, Monteiro HF, Bazzazan A, Scoggin K, Rolston M, El-Sheikh Ali H, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023; 206:60-70. [PMID: 37187056 DOI: 10.1016/j.theriogenology.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In spite of controversy, recent studies present evidence that a microbiome is present in the human placenta. However, there is limited information about a potential equine placental microbiome. In the present study, we characterized the microbial population in the equine placenta (chorioallantois) of healthy prepartum (280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, n = 11) mares, using 16S rDNA sequencing (rDNA-seq). In both groups, the majority of bacteria belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant genera were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, Pantoea, and an unclassified Microbacteriaceae. Alpha diversity (p < 0.05) and beta diversity (p < 0.01) were significantly different between pre- and postpartum samples. Additionally, the abundance of 7 phyla and 55 genera was significantly different between pre- and postpartum samples. These differences suggest an effect of the caudal reproductive tract microbiome on the postpartum placental microbial DNA composition, since the passage of the placenta through the cervix and vagina during normal parturition had a significant influence on the composition of the bacteria found in the placenta when using 16S rDNA-seq. These data support the hypothesis that bacterial DNA is present in healthy equine placentas and opens the possibility for further exploration of the impact of the placental microbiome on fetal development and pregnancy outcome.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ali Bazzazan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
The Connection between Immunocompetence and Reproduction in Wildlife. Life (Basel) 2023; 13:life13030785. [PMID: 36983939 PMCID: PMC10051471 DOI: 10.3390/life13030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Reproduction rate is important for the survival of animal populations. During gravidity, a trade-off occurs between the individual well-being of gravid females and investment in offspring. Due to the high synthesis and energy requirements for the growing fetus, other physiological activities are downregulated in pregnant females. This causes changes in the composition of the reproductive microbiome and a decreased immune response to presented antigens and pathogens. As a result, the immunocompetence of gravid wild animals declines. In general, therefore, increased infection rates during pregnancy can be observed in all wildlife species studied. In the course of evolution, however, this has apparently evolved as a suitable strategy to ensure the survival of the population as a whole.
Collapse
|
11
|
Balouei F, Stefanon B, Sgorlon S, Sandri M. Factors Affecting Gut Microbiota of Puppies from Birth to Weaning. Animals (Basel) 2023; 13:ani13040578. [PMID: 36830365 PMCID: PMC9951692 DOI: 10.3390/ani13040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The review described the most important factors affecting the development of the intestinal microbiota in puppies from birth to weaning. The health and well-being of the microbiome in puppies is influenced by the type of parturition, the maternal microbiota, and the diet of the mother, directly or indirectly. The isolation of bacteria in dogs from the placenta, fetal fluids, and fetuses suggests that colonization could occur before birth, although this is still a matter of debate. Accordingly, newborn puppies could harbor bacteria that could be of maternal origin and that could influence microbial colonization later in life. However, the long-term impacts on health and the clinical significance of this transfer is not yet clear and needs to be investigated. The same maternal bacteria were found in puppies that were born vaginally and in those delivered via cesarean section. Potentially, the relationship between the type of parturition and the colonization of the microbiome will influence the occurrence of diseases, since it can modulate the gut microbiome during early life. In addition, puppies' gut microbiota becomes progressively more similar to adult dogs at weaning, as a consequence of the transition from milk to solid food that works together with behavioral factors. A number of researches have investigated the effects of diet on the gut microbiota of dogs, revealing that dietary interference may affect the microbial composition and activity through the production of short-chain fatty acids and vitamins. These compounds play a fundamental role during the development of the fetus and the initial growth of the puppy. The composition of the diet fed during pregnancy to the bitches is also an important factor to consider for the health of newborns. As far as it is known, the effects of the type of parturition, the maternal microbiota, and the diet on the microbial colonization and the long-term health of the dogs deserve further studies. Definitely, longitudinal studies with a larger number of dogs will be required to assess a causal link between microbiome composition in puppies and diseases in adult dogs.
Collapse
|
12
|
A study on the correlation between intrauterine microbiota and uterine pyogenesis in dogs. Theriogenology 2023; 196:97-105. [PMID: 36413869 DOI: 10.1016/j.theriogenology.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pyometra is a common and high-incidence reproductive system disease in female dogs, and its development involves both hormonal and bacterial factors. Characterization of the endometrial microbiome in healthy dogs and diseased dogs with pyometra remains unclear at present, however. In this study, dogs with pyometra were identified based on the clinical examinations, hematology examinations, vaginal smears and uterine histopathology. The endometrial samples of healthy dogs (n = 30) and diseased dogs (n = 41) were then collected and sequenced by 16S rRNA high-throughput sequencing technology. Dogs with pyometra suffered from inflammation, and their endometrial microbial diversity (ACE and Chao 1 indices) was significantly lower than that of healthy dogs (P < 0.05). The endometrial samples of both groups were enriched in four phyla (Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria), with a greater abundance of Firmicutes in diseased dogs (P < 0.05). At the genus level, the most prevalent microbes in diseased dogs belonged to Pseudomonas, Escherichia-Shigella, Mycoplasma, Enterococcus, Haemophilus, Vibrio and Ralstonia, with lower levels of Mycoplasma, Enterococcus and Haemophilus in the healthy control. Principal co-ordinates analysis and non-metric multi-dimensional scaling showed that the endometrial microbiome of diseased dogs clustered separately from that of the healthy controls (P < 0.05). In the LDA effect size analysis, 18 members of the endometrial microbiome were screened. Of these, the bacterial species Pseudomonas_aeruginosa and microbes within the genera Mycoplasma, Enterococcus and Haemophilus were found to be enriched in the uteruses of diseased dogs. Furthermore, the Random Forests model further confirmed that Mycoplasma and Haemophilus could be considered as biomarkers of diseased endometrium. In conclusion, this study provided a theoretical basis for the development of probiotic preparation in the future.
Collapse
|
13
|
Holyoak GR, Premathilake HU, Lyman CC, Sones JL, Gunn A, Wieneke X, DeSilva U. The healthy equine uterus harbors a distinct core microbiome plus a rich and diverse microbiome that varies with geographical location. Sci Rep 2022; 12:14790. [PMID: 36042332 PMCID: PMC9427864 DOI: 10.1038/s41598-022-18971-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
The goal of this study was to understand the composition and existence of the resident uterine microbiome in healthy mares and to establish the presence of a core microbiome for the healthy equine uterus. We analyzed the microbiomes of 35 healthy mares that are long-time residents of three farms in Oklahoma, Louisiana, and Australia as well as that of 19 mares purchased from scattered owners in the Southern Mid-Western states of the United States. Over 6 million paired-end reads of the V4 region of the 16S rRNA gene were obtained resulting in 19,542 unique Amplicon Sequence Variants (ASVs). ASVs were assigned to 17 known phyla and 213 known genera. Most abundant genera across all animals were Pseudomonas (27%) followed by Lonsdalea (8%), Lactobacillus (7.5%), Escherichia/Shigella (4.5%), and Prevotella (3%). Oklahoma and Louisiana samples were dominated by Pseudomonas (75%). Lonsdalea (28%) was the most abundant genus in the Australian samples but was not found in any other region. Microbial diversity, richness, and evenness of the equine uterine microbiome is largely dependent on the geographical location of the animal. However, we observed a core uterine microbiome consisting of Lactobacillus, Escherichia/Shigella, Streptococcus, Blautia, Staphylococcus, Klebsiella, Acinetobacter, and Peptoanaerobacter.
Collapse
Affiliation(s)
- G. R. Holyoak
- grid.65519.3e0000 0001 0721 7331Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK USA
| | - H. U. Premathilake
- grid.65519.3e0000 0001 0721 7331Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK USA
| | - C. C. Lyman
- grid.252546.20000 0001 2297 8753College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - J. L. Sones
- grid.64337.350000 0001 0662 7451School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA USA
| | - A. Gunn
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW Australia
| | - X. Wieneke
- grid.65519.3e0000 0001 0721 7331Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK USA ,grid.16753.360000 0001 2299 3507Present Address: Department of Pathology and Laboratory Medicine; Center for Genomics, Anne and Robert H. Lurie Children′s Hospital, Northwestern Feinberg School of Medicine, Chicago, IL USA
| | - U. DeSilva
- grid.65519.3e0000 0001 0721 7331Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK USA
| |
Collapse
|
14
|
Shi Y, Tang L, Bai X, Du K, Wang H, Jia X, Lai S. Heat Stress Altered the Vaginal Microbiome and Metabolome in Rabbits. Front Microbiol 2022; 13:813622. [PMID: 35495670 PMCID: PMC9048824 DOI: 10.3389/fmicb.2022.813622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit’s vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.
Collapse
|
15
|
Wang X, Zhang Y, Li C, Li G, Wu D, Li T, Qu Y, Deng W, He Y, Penttinen P, Zhang H, Huang Y, Zhao K, Zou L. Antimicrobial resistance of Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp. isolated from the feces of giant panda. BMC Microbiol 2022; 22:102. [PMID: 35421931 PMCID: PMC9008915 DOI: 10.1186/s12866-022-02514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp., common gut bacteria in giant pandas, include opportunistic pathogens. The giant panda is an endangered species, classified as vulnerable by the World Wildlife Foundation. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from giant pandas is vital not only for their protection but also for public health. Results A total of 166 E. coli, 68 Enterobacter spp., 116 K. pneumoniae and 117 Enterococcus spp. isolates were collected from fecal samples of 166 giant pandas. In the antimicrobial susceptibility tests, 144 E. coli isolates, 66 Enterobacter spp. isolates, 110 K. pneumoniae isolates and 43 Enterococcus spp. isolates were resistant to at least one antimicrobial. The resistant isolates carried antimicrobial resistance genes (ARGs), including sul3, blaTEM, blaSHV and tetA. The differences in the prevalence of the bla types implied that the genetic basis for β-lactam resistance among the E. coli, Enterobacter spp. and K. pneumoniae isolates was different. The strain K. pneumoniae K85 that was resistant to sixteen antimicrobials was selected for whole genome sequencing. The genome contained Col440I, IncFIBK and IncFIIK plasmids and altogether 258 ARGs were predicted in the genome; 179 of the predicted ARGs were efflux pump genes. The genetic environment of the β-lactamase genes blaCTX-M-3 and blaTEM-1 in the K. pneumoniae K85 genome was relatively similar to those in other sequenced K. pneumoniae genomes. In comparing the giant panda age groups, the differences in the resistance rates among E. coli, K. pneumoniae and Enterobacter spp. isolates suggested that the infections in giant pandas of different age should be treated differently. Conclusions Antimicrobial resistance was prevalent in the bacterial isolates from the giant pandas, implying that the gut bacteria may pose serious health risks for captive giant pandas. The resistance genes in the genome of K. pneumoniae K85 were associated with insertion sequences and integron-integrase genes, implying a potential for the further spread of the antimicrobial resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02514-0.
Collapse
|
16
|
Aguilar LAB, Leach K, Watson MK, Wang C, Rivera S. Medical management of open pyometra in a giant panda (
Ailuropoda melanoleuca
). VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Chengdong Wang
- Chengdu Research Base of Giant Panda Breeding Northern Suburb Chengdu Sichuan China
| | | |
Collapse
|
17
|
Yan X, Su X, Ren Z, Fan X, Li Y, Yue C, Yang M, Deng H, Deng Y, Xu Z, Zhang D, Li L, Hou R, Liu S, Deng J. High Prevalence of Antimicrobial Resistance and Integron Gene Cassettes in Multi-Drug-Resistant Klebsiella pneumoniae Isolates From Captive Giant Pandas (Ailuropoda melanoleuca). Front Microbiol 2022; 12:801292. [PMID: 35185827 PMCID: PMC8853720 DOI: 10.3389/fmicb.2021.801292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Multi-drug-resistant Klebsiella pneumoniae (MDR K. pneumonia) is increasingly being reported with corresponding increase in morbidity and mortality all over the world. However, limited information is available concerning MDR K. pneumonia in giant pandas. The objective of this study was to grasp the drug resistance profile of MDR K. pneumonia isolated from giant pandas. A total of 182 K. pneumoniae isolates were collected from fresh feces of 94 captive giant pandas of different ages and sex and separated by season. We performed a standard disk diffusion antimicrobial susceptibility test with the isolates and further evaluated the antibiotic resistance genes (ARGs) of multi-drug-resistant strains by high-throughput quantitative PCR. In addition, we then analyzed mobile genetic elements (MGEs), integron gene cassettes, and the multi-locus sequence typing of multi-drug-resistant strains by PCR. Antimicrobial susceptibility testing results demonstrated that a total of 30 (16.5%) K. pneumoniae isolates showed multiple drug resistances. The thirty MDR K. pneumonia isolates were mainly resistant to amoxicillin (100.0%), doxycycline (86.7%), chloramphenicol (60.0%), compound trimethoprim (60.0%) and trimethoprim (56.7%). Fifty different types of antibiotic resistance genes were found, which included a total of 671 antibiotic resistance genes, in the 30 multi-drug-resistant isolates. The top ten resistance genes were: vanTC-02, aacC, blaCTX-M-04, blaSHV-01, blaSHV-02, ampC-04, blaOXY, tetD, blaTEM and tetA-02. Thirteen mobile genetic elements were detected, of which IS26 (96.67%) and intI1 (96.67%) had the highest frequency. The thirty MDR K. pneumonia isolates were negative for the traA, traF, tnsA, IS1133, ISpa7, ISkpn6, intI2 and intI3 genes. Moreover, a further investigation of integrons revealed that two types of specific gene cassettes (dfrA12 + orfF + aadA2 and dfrA12 + orfF) were identified in class 1 integrons. Multi-locus sequence typing results showed that 22 STs in the thirty MDR K. pneumonia isolates were identified, the main type was ST37 (5/30). Our results illustrate that effective surveillance and strict biosecurity strategies should be taken to prevent the spread of multi-drug-resistant bacteria, and monitor the emergence of mobile genetic elements and integrons.
Collapse
Affiliation(s)
- Xia Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueyang Fan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Yunli Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Mei Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongsheng Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chenghua, China
- *Correspondence: Songrui Liu,
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Junliang Deng,
| |
Collapse
|
18
|
Wang J, Pu Y, Zeng Y, Chen Y, Zhao W, Niu L, Chen B, Yang Z, Wu L, Pan K, Jing B, Zeng D, Ni X. Multi-functional Potential of Five Lactic Acid Bacteria Strains Derived from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2022; 15:668-681. [PMID: 35000110 DOI: 10.1007/s12602-021-09881-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The multi-functional properties of lactic acid bacteria (LAB) on host health have been a popular research topic. The aim of present study was to assess the multi-functional potential of five LAB strains isolated from giant panda. In this study, we analyzed five giant panda LAB strains (Weissella confuse WJ202003 (W3), WJ202009 (W9), WJ202021 (W21), BSP201703 (X3); Lactiplantibacillus plantarum BSGP201683 (G83)) and found that they exhibited rapid growth as well as strong acid production capacity. The five LAB strains possessed high cell surface hydrophobicity to the four tested solvents (xylene, hexadecane, chloroform, ethyl acetate; except strain W9), auto-aggregation ability, co-aggregation ability with three pathogens (Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella), adhesion ability to Caco-2 cell line, and strongly biofilm formation ability, suggesting an adhesion property. As investigated for their antioxidative potential, all the strains showed good tolerance to H2O2, high scavenging ability against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl (OH-), and reduction ability. Furthermore, the five LAB strains could produce multiple probiotic substances, including exopolysaccharide (EPS), gamma-aminobutyric acid (GABA), bile salt hydrolase (BSH), cellulase (only strain G83), and protease (except strain X3), which was the first to report the production of EPS, GABA, BSH, cellulase, and protease in giant panda-derived LAB strain. These results demonstrated that strains W3, W9, W21, X3, and G83 had multi-functional potential and could be utilized as potential probiotics for giant panda.
Collapse
Affiliation(s)
- Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingyi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Benhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zihan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liqian Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
19
|
Yue C, Luo X, Ma X, Zhang D, Yan X, Deng Z, Li Y, Liu Y, An J, Fan X, Li L, Su X, Hou R, Cao S, Liu S. Contrasting Vaginal Bacterial Communities Between Estrus and Non-estrus of Giant Pandas ( Ailuropoda melanoleuca). Front Microbiol 2021; 12:707548. [PMID: 34557168 PMCID: PMC8453077 DOI: 10.3389/fmicb.2021.707548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial infection and imbalance of bacterial community in the genitourinary system of giant panda could affect the reproductive health. In severe cases, it can also lead to abortion. In this study, 13 of vaginal secretions in the estrue (E) group and seven of vaginal secretions in the non-estrue (NE) group were used to study the composition and diversity of vaginal bacterial communities between estrus and non-estrus by 16S rRNA gene sequencing analysis. The results showed that the vaginal microbiome in giant pandas shared the same top five abundant species between estrus and non-estrus at the phylum level. However, the vaginal microbiome changed significantly during estrus at the genus level. In top 10 genera, the abundance of Escherichia, Streptococcus, and Bacteroides in the E group was significantly higher than that in the NE group (p<0.05); Azomonas, Porphyromonas, Prevotella, Campylobacter, and Peptoniphilus in the NE group was significantly higher than that in the E group (p<0.05). The richness and diversity of vaginal microbiome in giant panda on estrus were significantly lower than those on non-estrus (p<0.05). It is noteworthy that the abundance of Streptococcus, Escherichia, and Bacteroides of vagina in giant pandas maintained low abundance in the daily. Whereas, they increased significantly during estrus period, which may play an important role in female giant pandas during estrus period. It was hypothesized that hormones may be responsible for the changes in the vaginal microbiome of giant pandas between estrus and no-estrus stages.
Collapse
Affiliation(s)
- Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xue Luo
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Zeshuai Deng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| |
Collapse
|
20
|
Zhang L, Li C, Zhai Y, Feng L, Bai K, Zhang Z, Huang Y, Li T, Li D, Li H, Cui P, Chen D, Wang H, Yang X. Analysis of the vaginal microbiome of giant pandas using metagenomics sequencing. Microbiologyopen 2020; 9:e1131. [PMID: 33205903 PMCID: PMC7755806 DOI: 10.1002/mbo3.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, a total of 14 vaginal samples (GPV1‐14) from giant pandas were analyzed. These vaginal samples were divided into two groups as per the region and age of giant pandas. All the vaginal samples were analyzed using metagenomic sequencing. As per the outcomes of metagenomic analysis, Proteobacteria (39.04%), Firmicutes (5.27%), Actinobacteria (2.94%), and Basidiomycota (2.77%) were found to be the dominant phyla in the microbiome of the vaginal samples. At the genus level, Pseudomonas (21.90%) was found to be the most dominant genus, followed by Streptococcus (3.47%), Psychrobacter (1.89%), and Proteus (1.38%). Metastats analysis of the microbial species in the vaginal samples of giant pandas from Wolong Nature Reserve, Dujiangyan and Ningbo Youngor Zoo, and Ya'an Bifengxia Nature Reserve was found to be significantly different (p < 0.05). Age groups, that is, AGE1 (5‐10 years old) and AGE2 (11‐16 years old), also demonstrated significantly different inter‐group microbial species (p < 0.05). For the first time, Chlamydia and Neisseria gonorrhoeae were detected in giant pandas’ reproductive tract. GPV3 vaginal sample (2.63%) showed highest Chlamydia content followed by GPV14 (0.91%), and GPV7 (0.62%). GPV5 vaginal sample (7.17%) showed the highest Neisseria gonorrhoeae content, followed by GPV14 (7.02%), and GPV8 (6.50%). Furthermore, we employed eggNOG, CAZy, KEGG, and NCBI databases to investigate the functional significance of giant panda's vaginal microbial community. The outcomes indicated that giant panda's vaginal microbes were involved in biological processes. The data from this study will help in improving the reproductive health of giant pandas.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yaru Zhai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Lan Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Keke Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zhizhong Zhang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Pengfei Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
21
|
Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress. Animals (Basel) 2020; 10:ani10112020. [PMID: 33153053 PMCID: PMC7692283 DOI: 10.3390/ani10112020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.
Collapse
|
22
|
Garcia-Grau I, Simon C, Moreno I. Uterine microbiome-low biomass and high expectations†. Biol Reprod 2020; 101:1102-1114. [PMID: 30544156 DOI: 10.1093/biolre/ioy257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
The existence of different bacterial communities throughout the female reproductive tract has challenged the traditional view of human fetal development as a sterile event. There is still no consensus on what physiological microbiota exists in the upper reproductive tract of the vast majority of women who are not in periods of infection or pregnancy, and the role of bacteria that colonize the upper reproductive tract in uterine diseases or pregnancy outcomes is not well established. Despite published studies and advances in uterine microbiome sequencing, some study aspects-such as study design, sampling method, DNA extraction, sequencing methods, downstream analysis, and assignment of taxa-have not yet been improved and standardized. It is time to further investigate the uterine microbiome to increase our understanding of the female reproductive tract and to develop more personalized reproductive therapies, highlighting the potential importance of using microbiological assessment in infertile patients.
Collapse
Affiliation(s)
- Iolanda Garcia-Grau
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain.,Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Carlos Simon
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain.,Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Igenomix S.L, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Stanford University, California, USA
| | - Inmaculada Moreno
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Igenomix S.L, Valencia, Spain
| |
Collapse
|
23
|
Jiang H, Chen W, Su L, Huang M, Lin L, Su Q, Li G, Ahmad HI, Li L, Zhang X, Li H, Chen J. Impact of host intraspecies genetic variation, diet, and age on bacterial and fungal intestinal microbiota in tigers. Microbiologyopen 2020; 9:e1050. [PMID: 32395912 PMCID: PMC7349146 DOI: 10.1002/mbo3.1050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The bacterial microbiota in the gut varies among species, as well as with habitat, diet, age, and other factors. Intestinal microbiota homeostasis allows a host to adjust metabolic and immune performances in response to environmental changes. Therefore, potential implications of the gut microbiota in sustaining the health of the host have gained increasing attention in the field of endangered animal conservation. However, the effect of host intraspecies genetic variation on the gut microbiota is unknown. Moreover, little is known about the complexity of the gut mycobiota. Tigers are listed as endangered species, raising worldwide concern. Potential influences of subspecies, diet, and age on the gut microbiota in tigers were investigated in this study to provide a better understanding of the response of the tiger gut microbiota to external changes. The results revealed that the impacts of the factors listed above on gut bacterial and fungal communities are versatile. Host intraspecies genetic variation significantly impacted only fungal alpha diversity of the gut microbiota. Differences in diet, on the other hand, had a significant impact on alpha diversity of the gut microbiota, but exerted different effects on beta diversity of gut bacterial and fungal communities. Host age had no significant impact on the diversity of the gut fungal communities, but significantly impacted beta diversity of gut bacterial communities. This comprehensive study of tiger gut microbiota is an essential reference for tiger conservation when considering feeding and management strategies, and will contribute to a better understanding of the mycobiota in wildlife.
Collapse
Affiliation(s)
- Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, Guangdong, China
| | - Li Su
- Guangzhou Zoo, Guangzhou, Guangdong, China
| | - Mingwei Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Libo Lin
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qiao Su
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanyu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Zakošek Pipan M, Kajdič L, Kalin A, Plavec T, Zdovc I. Do newborn puppies have their own microbiota at birth? Influence of type of birth on newborn puppy microbiota. Theriogenology 2020; 152:18-28. [PMID: 32361303 DOI: 10.1016/j.theriogenology.2020.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/11/2020] [Accepted: 04/11/2020] [Indexed: 01/24/2023]
Abstract
With recent research in humans, a hypothesis known as the sterile womb paradigm has been challenged. The objectives of this study were to determine the presence of placental and fetal microbiomes in dogs, the effect of different types of parturition on the fetal microbiome, and the effect that the fetal microbiome has on early puppy development. A total of 96 newborn puppies from 17 dams were included in the study. Puppies were divided into two groups depending on the type of parturition (vaginal birth (VB) or cesarean section (CS)). Immediately after birth, swabs of the placenta and meconium were taken. Swabs of the oral and vaginal mucosa of the dam were taken in the second half of the pregnancy and just before parturition. All samples were analyzed with a classical bacteriological examination, and bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The weight gain of each puppy was tracked daily in the first 7 days postpartum. Bacteria from several different genera were isolated from 86.5% of meconium samples and 57% of placenta samples. While the meconium microbiota resembled bacteria from the maternal vagina in VB puppies, the meconium microbiota of puppies born by CS indicated a relative resemblance to maternal oral and vaginal microbiota. A statistically significant difference in the relative growth rate between puppies born by VB and CS was found (p < 0.05), with puppies born by VB gaining weight faster compared to the CS group. This difference was even more noticeable when VB puppies were compared to puppies born by elective CS. Puppies born without a detectable meconium or placental microbiota showed a slower growth rate than those with a meconium microbiota, regardless of the type of parturition (p < 0.05). The findings of this study provide new information about the placental microbiome in healthy pregnant dams and suggest intrauterine colonization of the fetus in dogs. It seems that the type of delivery and bacterial colonization might be an important consideration for the weight gain in puppies in the first few days of life.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Leonida Kajdič
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Kalin
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia; Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Plavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia; Small Animal Veterinary Hospital Hofheim, Hofheim am Taunus, Germany
| | - Irena Zdovc
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Zhao S, Li C, Li G, Yang S, Zhou Y, He Y, Wu D, Zhou Y, Zeng W, Li T, Qu Y, Li B, Deng W, Jin L, Yu X, Huang Y, Zhang H, Zou L. Comparative Analysis of Gut Microbiota Among the Male, Female and Pregnant Giant Pandas ( Ailuropoda Melanoleuca). Open Life Sci 2019; 14:288-298. [PMID: 33817162 PMCID: PMC7874769 DOI: 10.1515/biol-2019-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
The giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.
Collapse
Affiliation(s)
- Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Caiwu Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Guo Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yingming Zhou
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yongguo He
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China
| | - Daifu Wu
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yu Zhou
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Wen Zeng
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Ti Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yuanyuan Qu
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yan Huang
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Hemin Zhang
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Heil BA, Paccamonti DL, Sones JL. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genomics 2019; 51:390-399. [PMID: 31251700 DOI: 10.1152/physiolgenomics.00045.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of the microbiome in humans, it has been studied in many mammalian species. Different microbiological communities with variable richness and diversity have been found among these species in distinct areas of the reproductive tract. Human studies have shown that the composition of the microbiome is dependent on body site and several host-related factors. Furthermore, specific phyla have been identified among the different species and within distinct areas of the female reproductive tract, but a "core" microbiome of the female reproductive tract has not been defined in any species. Moreover, the function of the microbiome in the reproductive tract is not yet fully understood. However, it has been suggested that a change in diversity of the microbiome and the presence or absence of specific microbial species might be useful indicators of pregnancy outcomes. Increased comprehensive knowledge of the microbiological communities in the female reproductive tract is needed since adverse outcomes represent a significant problem to many species, including livestock, exotic or endangered species, and humans. To the authors' knowledge, a review combining current female reproductive tract microbiome data among different mammalian species has not been published yet. Herein is a comprehensive review of what is known in the field of the female reproductive microbiome and how it correlates with reproductive success or failure in mammals. Further studies may lead to optimization of therapies in the treatment of reproductive tract infections and pregnancy failure, and may create opportunities for novel approaches for improving reproductive efficiency in animals and people.
Collapse
Affiliation(s)
- Babiche A Heil
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dale L Paccamonti
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jenny L Sones
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
27
|
Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci Rep 2019; 9:6838. [PMID: 31048728 PMCID: PMC6497628 DOI: 10.1038/s41598-019-43280-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/15/2019] [Indexed: 01/02/2023] Open
Abstract
The transferred microbiota from mother to baby constitutes the initial infant gastrointestinal microbiota and has an important influence on the development and health of infants in human. However, the reproductive tract microbiota of avian species and its inheritance have rarely been studied. We aimed to characterize the microbial community in the chicken reproductive tract and determine the origin of the chicken embryo gut microbiota. Microbiota in four different portions of chicken oviduct were determined using 16S rRNA metagenomic approach with the IonTorrent platform. Additionally, we analyzed the mother hen’s magnum and cloaca, descendent egg, and embryo gut microbiota. The microbial composition and relative abundance of bacterial genera were stable throughout the entire chicken reproductive tract, without significant differences between the different parts of the oviduct. The chicken reproductive tract showed a relatively high abundance of Lactobacillus species. The number of bacterial species in the chicken reproductive tract significantly increased following sexual maturation. Core genera analysis detected 21 of common genera in the maternal magnum and cloaca, descendent egg shell, egg white, and embryo gut. Some elements of the maternal oviduct microbiota appear to be transferred to the embryo through the egg white and constitute most of the embryo gut bacterial population.
Collapse
|
28
|
Einenkel R, Zygmunt M, Muzzio DO. Microorganisms in the healthy upper reproductive tract: from denial to beneficial assignments for reproductive biology. Reprod Biol 2019; 19:113-118. [PMID: 31023521 DOI: 10.1016/j.repbio.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Contrary to the traditional assumption of a sterile uterus, the number of studies characterizing microbial entities in the healthy upper reproductive tract (endometrial cavity, including follicular fluid and placenta) have been on the increase. Substantial data has been accumulated correlating microbial composition with fertility outcome. In this context, the presence of certain taxa was associated to an improved reproductive success. A summarization for the evidence of these molecular mechanisms through which bacteria may affect developmental processes during pregnancy is presented and discussed with special focus placed upon the immunological aspects.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Damián Oscar Muzzio
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| |
Collapse
|
29
|
Comizzoli P, Power M. Reproductive Microbiomes in Wild Animal Species: A New Dimension in Conservation Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:225-240. [PMID: 31471799 DOI: 10.1007/978-3-030-23633-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Communities of microbes have coevolved in animal organisms and are found in almost every part of the body. Compositions of those communities (microbiota) as well as their genomes and genes (microbiomes) are critical for functional regulations of the body organ systems-the digestive or 'gut' microbiome being the most described so far. Based on extensive research in humans, microbiomes in the reproductive tract may play a role in reproductive functions and pregnancy. However, in wild animal species, those microbiomes have been poorly studied, and as a result, little is known about their involvement in fertility or parental/offspring health. This emerging research area is highly relevant to conservation biology from captive breeding management to successful reintroduction or maintenance of wild populations. The objective of this chapter is to review current knowledge about reproductive microbiomes in healthy wild animal species. While recognizing the current technical limits of microbial identification in all animal species, we also explore the link between microbial communities (within female or male reproductive systems) and fertility, from conception to birth outcome. In addition, it is critical to understanding how reproductive microbiomes are affected by environmental factors (including captivity, contact with other individuals, or changes in the ecosystem) to optimize conservation efforts. Thus, reproductive microbiomes represent a novel dimension in conservation biology that will likely gain importance in the future.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| | - M Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
30
|
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L. Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas. Front Microbiol 2018; 9:1717. [PMID: 30108570 PMCID: PMC6080571 DOI: 10.3389/fmicb.2018.01717] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation.
Collapse
Affiliation(s)
- Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin Gao
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Anyun Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yingmin Zhou
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Mei Long
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Daifu Wu
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Yongguo He
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Caiwu Li
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Hemin Zhang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Pasternak JA, Hamonic G, Van Kessel J, Wheler CL, Dyck MK, Wilson HL. Intrauterine vaccination induces a dose-sensitive primary humoral response with limited evidence of recall potential. Am J Reprod Immunol 2018; 80:e12855. [PMID: 29607560 DOI: 10.1111/aji.12855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Induction of the local mucosal immune system within the reproductive tract is widely considered to be a key component in the development of effective prophylactic vaccines to control the spread of sexually transmitted infections. Here, we examine the capacity of the upper reproductive tract to act as a site of immune induction following. METHOD OF STUDY Two vaccines formulated with a triple adjuvant combination and either recombinant bovine herpesvirus (tgD) protein or ovalbumin (OVA) were delivered at varying doses to the uterine lumen of rabbits and the resulting immune response evaluated after 32 days. RESULTS Intrauterine vaccination produced a dose-dependent induction of both antigen-specific IgG and IgA in serum. Both uterine and broncheoalveolar lavage of the high and medium-dose vaccine group contained a significant increase in both anti-OVA and anti-tgD IgG, but no significant quantities of antigen-specific IgA were observed. The restimulation of splenocytes from the high-dose vaccine group with ovalbumin (OVA) only resulted in a small but significant increase in gene expression of the Th1 cytokines (IL2/IFNγ) in the absence of an observable increase in proliferation. CONCLUSION Collectively, the results confirm the capacity of the uterine immune system to generate a primary response following stimulation.
Collapse
Affiliation(s)
- Jonathan Alexander Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Colette L Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine Microbiota: Residents, Tourists, or Invaders? Front Immunol 2018; 9:208. [PMID: 29552006 PMCID: PMC5840171 DOI: 10.3389/fimmu.2018.00208] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Uterine microbiota have been reported under various conditions and populations; however, it is uncertain the level to which these bacteria are residents that maintain homeostasis, tourists that are readily eliminated or invaders that contribute to human disease. This review provides a historical timeline and summarizes the current status of this topic with the aim of promoting research priorities and discussion on this controversial topic. Discrepancies exist in current reports of uterine microbiota and are critically reviewed and examined. Established and putative routes of bacterial seeding of the human uterus and interactions with distal mucosal sites are discussed. Based upon the current literature, we highlight the need for additional robust clinical and translational studies in this area. In addition, we discuss the necessity for investigating host–microbiota interactions and the physiologic and functional impact of these microbiota on the local endometrial microenvironment as these mechanisms may influence poor reproductive, obstetric, and gynecologic health outcomes and sequelae.
Collapse
Affiliation(s)
- James M Baker
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dana M Chase
- Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix, AZ, United States
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
33
|
Zou W, Li C, Yang X, Wang Y, Cheng G, Zeng J, Zhang X, Chen Y, Cai R, Huang Q, Feng L, Wang H, Li D, Zhang G, Chen Y, Zhang Z, Zhang H. Frequency of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from giant pandas (Ailuropoda melanoleuca) in China. Microb Pathog 2018; 116:173-179. [DOI: 10.1016/j.micpath.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022]
|
34
|
Chen D, Li C, Feng L, Zhang Z, Zhang H, Cheng G, Li D, Zhang G, Wang H, Chen Y, Feng M, Wang C, Wu H, Deng L, Ming H, Yang X. Analysis of the influence of living environment and age on vaginal fungal microbiome in giant pandas (Ailuropoda melanoleuca) by high throughput sequencing. Microb Pathog 2018; 115:280-286. [PMID: 29294370 DOI: 10.1016/j.micpath.2017.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 01/26/2023]
Abstract
A recent study has described the normal vaginal bacterial community in giant pandas, but there is a lack of knowledge of the fungal community residing in the vagina of giant pandas. In order to comprehensively understand the vaginal fungal microbial diversity and abundance in giant pandas, high throughput sequencing was used to analyse the ITS1 region, based on thirteen samples taken from the pandas' vaginas, which were grouped by sampling points and age. The results showed that the most abundant phyla were Basidiomycota (73.37%), followed by Ascomycota (20.04%), Zygomycota (5.23%), Glomeromycota (0.014%) and Chytridiomycota (0.006%). At the genus level, Guehomyces (37.92%) was the most abundant, followed by Cladosporium (9.072%), Trichosporon (6.2%) and Mucor (4.97%). Furthermore, Candida only accounted for a low percentage of the vaginal fungal community. With the saturation of rarefaction curves and fungal diversity indices, the samples from Dujiangyan and Chungking Safari Park (DC group) showed a higher fungal species richness and diversity than other living environments. Shannon diversity indices showed significant difference between group WL (Wolong nature reserve) and DC (P < .05). Additionally, a higher diversity was found in ten to fifteen years old (Group 2) than other groups. Group 2 and Group 3 displayed significant differences in the diversities of their vaginal fungal communities (P < .05). These data that has been collected from this research will be helpful for further study to improve the reproductive status of giant pandas.
Collapse
Affiliation(s)
- Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Lan Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zhizhong Zhang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Heming Zhang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Guangyang Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Guiquan Zhang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yanxi Chen
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Mingfu Feng
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - He Ming
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan, 623006, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|