1
|
Weintraub SJ, Li Z, Nakagawa CL, Collins JH, Young EM. Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics. Biotechnol Bioeng 2024. [PMID: 39659041 DOI: 10.1002/bit.28891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance - yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a "network-first" approach where a generalized metabolic network serves as a scaffold for mapping genes and a "cluster-first" approach where unsupervised machine learning co-expression analysis clusters genes. Both approaches provide insight into strain behavior. The network-first approach corroborates that Yarrowia upregulates lipid biosynthesis during nitrogen starvation and provides new evidence that riboflavin overproduction in Debaryomyces yeasts is overflow metabolism that is routed to flavin cofactor production under salt stress. The cluster-first approach does not rely on annotation; therefore, the coexpression analysis can identify known and novel genes involved in stress responses, mainly transcription factors and transporters. Therefore, this work links the genotype to the phenotype of biotechnologically relevant yeasts and demonstrates the utility of complementary computational approaches to gain insight from transcriptomics data across species and conditions.
Collapse
Affiliation(s)
- Sarah J Weintraub
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Zekun Li
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carter L Nakagawa
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric M Young
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2024; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
3
|
Botcazon C, Ramos-Martín F, Rodríguez-Moraga N, Bergia T, Acket S, Sarazin C, Rippa S. Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies. Biophys Chem 2024; 314:107305. [PMID: 39154582 DOI: 10.1016/j.bpc.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Francisco Ramos-Martín
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Nely Rodríguez-Moraga
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Thomas Bergia
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Sébastien Acket
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Catherine Sarazin
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France.
| | - Sonia Rippa
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France.
| |
Collapse
|
4
|
Jiang X, Hong X, Wang Z, Liu J, Zhong H, Ren J, Zhou B. Phospholipid biosynthesis regulation for improving pigment production by Monascus in response to ammonium chloride stress. Appl Environ Microbiol 2024; 90:e0114624. [PMID: 39287399 PMCID: PMC11497785 DOI: 10.1128/aem.01146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In the actual industrial production process, the efficient biosynthesis and secretion of Monascus pigments (MPs) tend to take place under abiotic stresses, which often result in an imbalance of cell homeostasis. The present study aimed to thoroughly describe the changes in lipid profiles in Monascus purpureus by absolute quantitative lipidomics and tandem mass tag-based quantitative proteomics. The results showed that ammonium chloride stress (15 g/L) increased MP production while inhibiting ergosterol biosynthesis, leading to an imbalance in membrane lipid homeostasis in Monascus. In response to the imbalance of lipid homeostasis, the regulation mechanism of phospholipids in Monascus was implemented, including the inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of the biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway rather than the Kennedy pathway. The inhibition of lysophospholipid biosynthesis was attributed to the upregulated expression of protein and its gene related to lysophospholipase NTE1, while maintenance of the PC/PE ratio was achieved by the upregulated expression of protein and its gene related to CTP: phosphoethanolamine cytidylyltransferase and phosphatidylethanolamine N-methyltransferase in the Kennedy pathway. These findings provide insights into the regulation mechanism of MP biosynthesis from new perspectives.IMPORTANCEMonascus is important in food microbiology as it produces natural colorants known as Monascus pigments (MPs). The industrial production of MPs has been achieved by liquid fermentation, in which the nitrogen source (especially ammonium chloride) is a key nutritional parameter. Previous studies have investigated the regulatory mechanisms of substance and energy metabolism, as well as the cross-protective mechanisms in Monascus in response to ammonium chloride stress. Our research in this work demonstrated that ammonium chloride stress also caused an imbalance of membrane lipid homeostasis in Monascus due to the inhibition of ergosterol biosynthesis. We found that the regulation mechanism of phospholipids in Monascus was implemented, including inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway. These findings further refine the regulatory mechanisms of MP production and secretion.
Collapse
Affiliation(s)
- Xiaofei Jiang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiya Hong
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhulin Wang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Haiyan Zhong
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
5
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
6
|
Chen Y, Gao Y, Yin J. Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans. Int J Mol Sci 2024; 25:10661. [PMID: 39408989 PMCID: PMC11476360 DOI: 10.3390/ijms251910661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0-80 mmol/L) on the anti-C. albicans effect of theasaponins (0-1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| |
Collapse
|
7
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
9
|
Bhagat N, Vakhlu J. Effects of biocontrol Bacillus sp. strain D5 on the pathogenic Fusarium oxysporum R1 at the microscopic and molecular level in Crocus sativus L. (saffron) corm. FEMS MICROBES 2024; 5:xtad025. [PMID: 38250179 PMCID: PMC10799715 DOI: 10.1093/femsmc/xtad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Corm rot of saffron caused by Fusarium oxysporum is a major threat to saffron cultivation the world over. To minimize the ill effects of chemical fungicides, attention has been shifted to the use of biocontrol agents for disease management in a sustainable way. In saffron, various biocontrol agents against corm rot disease have been reported and characterized but no study has been done so far to understand their interaction at the molecular level. The present study was conducted to unravel the mechanism of action of an already characterized native biocontrol agent i.e. Bacillus sp. strain D5 (Bar D5) against F. oxsporum R1 (Fox R1) in the saffron corm. The growth inhibition of Fox R1 was observed in vitro and in planta (saffron corm) by real time imaging. Bacillus sp. strain D5 reduced Fox R1 load in infected corms by 50% as quantified by q-PCR and the colony-forming unit method. Comparative transcriptome analysis revealed upregulation and downregulation of various Fox R1 genes in presence of Bar D5. The genes related to carbon metabolism, cell wall and membrane synthesis, and growth of Fox R1 were significantly downregulated in Bar D5-primed and Fox R1-inoculated corms as compared to only Fox R1-inoculated corms.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Jyoti Vakhlu
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| |
Collapse
|
10
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Hoffman HJ, McClelland EE. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:269-275. [PMID: 38758324 DOI: 10.1007/978-1-0716-3722-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Urease and phospholipase are enzymes that are important virulence factors for Cryptococcus neoformans. These are two of the most studied enzymes involved in how C. neoformans breaches the blood-brain barrier. Additionally, phospholipase secretion also supports dissemination from the lungs. This chapter describes the methods used to measure the secretion of these enzymes, which may be used to characterize strain invasiveness and virulence.
Collapse
Affiliation(s)
- Hunter J Hoffman
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Erin E McClelland
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
13
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
14
|
Desrini S, Girardot M, Imbert C, Mustofa M, Nuryastuti T. Screening antibiofilm activity of invasive plants growing at the Slope Merapi Mountain, Central Java, against Candida albicans. BMC Complement Med Ther 2023; 23:232. [PMID: 37438777 DOI: 10.1186/s12906-023-04044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Candida albicans causes high-mortality candidiasis. Antifungal drug resistance demands the development of virulence factor-targeting drugs, particularly antibiofilm. This study screened the effects of five invasive plants growing in Indonesia (Mimosa pudica, Lantana camara, Acacia mangium, Ageratina riparia, and Mikania micrantha) against C. albicans biofilms. Antifungal activity, antiphospholipase activity, biofilm morphology of C. albicans, and cytotoxic capacity were also evaluated. METHODS Maceration was used to extract the plants, and the most active extract inhibiting the biofilms was fractionated using liquid-liquid fractionation. Antibiofilm activity was determined by a colorimetric assay, MTT. Antifungal activity was tested using the broth microdilution method. A phospholipase assay was performed using the egg-yolk agar method. Influence on the C. albicans morphology was assessed using scanning electron microscopy (SEM). The cytotoxic effect was carried out against Vero and HeLa cell lines. RESULTS M. pudica extracts showed the most potent antifungal efficacy with minimum inhibitory concentration (MIC) of 15.62 µg/mL and 7.81 µg/mL for aerial parts and roots, respectively. At high concentrations (500 µg/mL and 250 µg/mL), ethanol extract of M. pudica aerial parts strongly inhibited the phospholipase activity. Ethyl-acetate fraction of M. pudica aerial parts demonstrated the most potent antibiofilm activity against 24 h old biofilm of C. albicans with an inhibitory concentration (53.89%) of 62.5 µg/mL showed no cytotoxicity in both Vero and HeLa cells. This fraction affected the morphology of C. albicans and contained promising compounds for inhibiting the 24 h old biofilm of C. albicans. CONCLUSIONS Invasive M. pudica plant inhibited the growth of planktonic C. albicans cells and its ethyl acetate fraction decreased the metabolic activity of C. albicans biofilms. This result demonstrates the potential of invasive M. pudica plant to reduce biofilm-associated candida infection.
Collapse
Affiliation(s)
- Sufi Desrini
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
- Doctoral Program of Faculty Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratoire Ecologie Et Biologie Des Interactions - UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marion Girardot
- Laboratoire Ecologie Et Biologie Des Interactions - UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Christine Imbert
- Laboratoire Ecologie Et Biologie Des Interactions - UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia.
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
15
|
Nie M, Liu T, Qiu X, Yang J, Liu J, Ren J, Zhou B. Regulation mechanism of lipids for extracellular yellow pigments production by Monascus purpureus BWY-5. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12654-6. [PMID: 37405437 DOI: 10.1007/s00253-023-12654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
The biosynthesis and secretion of Monascus pigments are closely related to the integrity of the cell membrane, which determines the composition of lipids and its content in cell membrane. The present study aimed to thoroughly describe the changes of lipid profiling in Monascus purpureus BWY-5, which was screened by carbon ion beam irradiation (12C6+) to almost single yield extracellular Monascus yellow pigments (extra-MYPs), by absolute quantitative lipidomics and tandem mass tags (TMT) based quantitative proteomic. 12C6+ irradiation caused non-lipid oxidation damage to Monascus cell membrane, leading to an imbalance in cell membrane lipid homeostasis. This imbalance was attributed to significant changes not only in the composition but also in the content of lipids in Monascus, especially the inhibition of glycerophospholipid biosynthesis. Integrity of plasma membrane was maintained by the increased production of ergosterol, monogalactosylmonoacylglycerol (MGMG) and sulfoquinovosylmonoacylglycerol (SQMG), while mitochondrial membrane homeostasis was maintained by the increase of cardiolipin production. The growth and extra-MYPs production of Monascus BWY-5 have been regulated by the promotion of sphingolipids (ceramide and sulfatide) biosynthesis. Simultaneous, energy homeostasis may be achieved by increase of TG synthesis and Ca2+/Mg2+-ATPase activity. These finding suggest ergosterol, cardiolipin, sphingolipids, MGMG and SQMG play a key facilitating role in cytomembrane lipid homeostasis maintaining for Monascus purpureus BWY-5, and then it is closely related to cell growth and extra-MYPs production. KEY POINTS: 1. Energy homeostasis in Monascus purpureus BWY-5 was achieved by increase of TG synthesis and Ca2+/Mg2+-ATPase activity. 2. Integrity of plasma membrane in Monascus purpureus BWY-5 was maintained by the increased production of ergosterol. 3. Mitochondrial membrane homeostasis in Monascus purpureus BWY-5 was maintaed by the increase of cardiolipin synthesis.
Collapse
Affiliation(s)
- Moyu Nie
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Tao Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xunhan Qiu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jingjing Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China.
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Ma X, Liu H, Liu Z, Wang Y, Zhong Z, Peng G, Gu Y. Trichosporon asahii PLA2 Gene Enhances Drug Resistance to Azoles by Improving Drug Efflux and Biofilm Formation. Int J Mol Sci 2023; 24:ijms24108855. [PMID: 37240199 DOI: 10.3390/ijms24108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to azoles has not yet been reported in T. asahii. Therefore, we investigated the drug resistance of T. asahii PLA2 (TaPLA2) by constructing overexpressing mutant strains (TaPLA2OE). TaPLA2OE was generated by homologous recombination of the recombinant vector pEGFP-N1-TaPLA2, induced by the CMV promoter, with Agrobacterium tumefaciens. The structure of the protein was found to be typical of sPLA2, and it belongs to the phospholipase A2_3 superfamily. TaPLA2OE enhanced antifungal drug resistance by upregulating the expression of effector genes and increasing the number of arthrospores to promote biofilm formation. TaPLA2OE was highly sensitive to sodium dodecyl sulfate and Congo red, indicating impaired cell wall integrity due to downregulation of chitin synthesis or degradation genes, which can indirectly affect fungal resistance. In conclusion, TaPLA2 overexpression enhanced the resistance to azoles of T. asahii by enhancing drug efflux and biofilm formation and upregulating HOG-MAPK pathway genes; therefore, it has promising research prospects.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Phospholipase B Is Critical for Cryptococcus neoformans Survival in the Central Nervous System. mBio 2023; 14:e0264022. [PMID: 36786559 PMCID: PMC10127605 DOI: 10.1128/mbio.02640-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic, encapsulated, yeast-like fungus that causes severe meningoencephalitis, especially in countries with high HIV prevalence. In addition to its well-known polysaccharide capsule, Cn has other virulence factors such as phospholipases, a heterogeneous group of enzymes that hydrolyze ester linkages in glycerophospholipids. Phospholipase B (PLB1) has been demonstrated to play a key role in Cn pathogenicity. In this study, we used a PLB1 mutant (plb1) and its reconstituted strain (Rec1) to assess the importance of this enzyme on Cn brain infection in vivo and in vitro. Mice infected with the plb1 strain survive significantly longer, have lower peripheral and central nervous system (CNS) fungal loads, and have fewer and smaller cryptococcomas or biofilm-like brain lesions compared to H99- and Rec1-infected animals. PLB1 causes extensive brain tissue damage and changes microglia morphology during cryptococcal disease, observations which can have important implications in patients with altered mental status or dementia as these manifestations are related to poorer survival outcomes. plb1 cryptococci are significantly more phagocytosed and killed by NR-9460 microglia-like cells. plb1 cells have altered capsular polysaccharide biophysical properties which impair their ability to stimulate glial cell responses or morphological changes. Here, we provide significant evidence demonstrating that Cn PLB1 is an important virulence factor for fungal colonization of and survival in the CNS as well as in the progression of cryptococcal meningoencephalitis. These findings may potentially help fill in a gap of knowledge in our understanding of cerebral cryptococcosis and provide novel research avenues in Cn pathogenesis. IMPORTANCE Cryptococcal meningoencephalitis (CME) is a serious disease caused by infection by the neurotropic fungal pathogen Cryptococcus neoformans. Due to the increasing number of cases in HIV-infected individuals, as well as the limited therapies available, investigation into potential targets for new therapeutics has become critical. Phospholipase B is an enzyme synthesized by Cn that confers virulence to the fungus through capsular enlargement, immunomodulation, and intracellular replication. In this study, we examined the properties of PLB1 by comparing infection of a Cn PLB1 mutant strain with both the wild-type and a PLB1-reconstituted strain. We show that PLB1 augments the survival and proliferation of the fungus in the CNS and strengthens virulence by modulating the immune response and enhancing specific biophysical properties of the fungus. PLB1 expression causes brain tissue damage and impacts glial cell functions, which may be responsible for the dementia observed in patients which may persist even after resolving from CME. The implications of PLB1 inhibition reveal its involvement in Cn infection and suggest that it may be a possible molecular target in the development of antifungal therapies. The results of this study support additional investigation into the mechanism of PLB1 to further understand the intricacies of cerebral Cn infection.
Collapse
|
18
|
Litwin A, Mironenka J, Bernat P, Soboń A, Różalska S. Accumulation of pyrethroids induces changes in metabolism of the entomopathogenic fungus Beauveria bassiana-Proteomic and lipidomic background. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114418. [PMID: 36527849 DOI: 10.1016/j.ecoenv.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Advances in the agrochemical industry, such as using plant protection products e.g. pyrethroid insecticides, lead to environmental pollution via the accumulation of toxic compounds in soil. An interesting approach to overcoming this threat is using biopreparations based on entomopathogenic fungi that come into contact with the residues of the insecticides in the environment. The aim of this study was to determine whether the soil-dwelling entomopathogenic fungus Beauveria bassiana ARSEF 2860 is capable of accumulating pyrethroids (λ-cyhalothrin, α-cypermethrin and deltamethrin) and to identify the metabolomics and proteomic implications of this process. In this work, we demonstrated for the first time that the tested fungus accumulated pyrethroids as early as on day 2 of incubation with an average efficiency of 90%. Pyrethroids accumulated in large quantities in the mycelium of B. bassiana induced oxidative stress and interacted differently with the enzymes of the basic metabolic pathways, enzymes associated with the organization of the actin cytoskeleton and cell walls, as well as extracellular enzymes responsible for the infectious abilities (α-cypermethrin caused a 61% decrease in PR1, λ-cyhalothrin - a 31% decrease in PR2, which are proteolytic enzymes with a confirmed role in the infectious process). This study also revealed that the accumulated pyrethroids decreased the activity of phospholipase C, which increased the triacylglycerols/diacylglycerols (TAG/DAG) ratio, especially in mycelium in which α-cypermethrin was accumulated. It should be emphasized that the accumulation of pyrethroids in the environment is not fully understood, and current research suggests that entomopathogenic fungi may be part of the process.
Collapse
Affiliation(s)
- Anna Litwin
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
19
|
Deng J, Lu Z, Wang H, Li N, Song G, Zhu Q, Sun J, Zhang Y. A secretory phospholipase A2 of a fungal pathogen contributes to lipid droplet homeostasis, assimilation of insect-derived lipids, and repression of host immune responses. INSECT SCIENCE 2022; 29:1685-1702. [PMID: 35276754 DOI: 10.1111/1744-7917.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Secretory phospholipase A2s (sPLA2s) are found in a wide range of organisms from bacteria to higher plants and animals and are involved in varied and cellular processes. However, roles of these enzymes in microbial pathogens remain unclear. Here, an sPLA2 (BbPLA2) was characterized in the filamentous insect pathogenic fungus, Beauveria bassiana. BbPLA2 was exclusively expressed in insect hemolymph-derived cells (hyphal bodies), and its expression was induced by insect-derived nutrients and lipids, and nutrient starvation. High levels of secretion of BbPLA2 were observed as well as its distribution in hyphal body lipid drops (LDs). Overexpression of BbPLA2 increased the ability of B. bassiana to utilize insect-derived nutrients and lipids, and promoted LD accumulation, indicating functions for BbPLA2 in mediating LD homeostasis and assimilation of insect-derived lipids. Strains overexpressing BbPLA2 showed moderately increased virulence, including more efficient penetration of the insect cuticle and evasion of host immune responses as compared to the wild type strain. In addition, B. bassiana-activated host immune genes were downregulated in the BbPLA2 overexpression strain, but upregulated by infections with a ΔBbPLA2 strain. These data demonstrate that BbPLA2 contributes to LD homeostasis, assimilation of insect-derived lipids, and repression of host immune responses.
Collapse
Affiliation(s)
- Juan Deng
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuoyue Lu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huifang Wang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ning Li
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guimei Song
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiankuan Zhu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingxin Sun
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Perczyk P, Młyńczak M, Wydro P, Broniatowski M. Persistent organic pollutants in model fungal membranes. Effects on the activity of phospholipases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184018. [PMID: 35926566 DOI: 10.1016/j.bbamem.2022.184018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Soils are the final sink for multiple organic pollutants emitted to the environment. Some of these chemicals which are toxic, recalcitrant and can bioaccumulate in living organism and biomagnify in trophic chains are classified persistent organic pollutants (POP). Vast areas of arable land have been polluted by POPs and the only economically possible means of decontamination is bioremediation, that is the utilization of POP-degrading microbes. Especially useful can be non-ligninolytic fungi, as their fast-growing mycelia can reach POP molecules strongly bond to soil minerals or humus fraction inaccessible to bacteria. The mobilized POP molecules are incorporated into the fungal plasma membrane where their degradation begins. The presence of POP molecules in the membranes can change their physical properties and trigger toxic effects to the cell. To avoid these phenomena fungi can quickly remodel the phospholipid composition of their membrane with employing different phospholipases and acyltransferases. However, if the presence of POP downregulates the phospholipases, toxic effects and the final death of microbial cells are highly probable. In our studies we applied multicomponent Langmuir monolayers with their composition mimicking fungal plasma membranes and studied their interactions with two different microbial phospholipases: phospholipase C (α-toxin) and phospholipase A1 (Lecitase ultra). The model membranes were doped with selected POPs that are frequently found in contaminated soils. It turned out that most of the employed POPs do not downregulate considerably the activity of phospholipases, which is a good prognostics for the application of non-ligninolytic fungi in bioremediation.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maja Młyńczak
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
21
|
Tang F, Yue J, Tian J, Ge F, Li F, Liu Y, Deng S, Zhang D. Microbial induced phosphate precipitation accelerate lead mineralization to alleviate nucleotide metabolism inhibition and alter Penicillium oxalicum's adaptive cellular machinery. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129675. [PMID: 35907285 DOI: 10.1016/j.jhazmat.2022.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Microbial-induced phosphate (P) precipitation (MIPP) based on P-solubilizing microorganisms (PSM) is regarded as a promising approach to bioimmobilize environmental lead (Pb). Nevertheless, the underlying changes of Pb2+ biotoxicity in PSM during MIPP process were rarely discussed. The current study explored the Pb2+ immobilization and metabolic changes in PSM Penicillium oxalicum postexposure to Pb2+ and/or tricalcium phosphate (TCP). TCP addition significantly increased soluble P concentrations, accelerated extracellular Pb mineralization, and improved antioxidative enzyme activities in P. oxalicum during MIPP process. Secondary Pb2+ biomineralization products were measured as hydroxypyromorphite [Pb10(PO4)6(OH)2]. Using untargeted metabolomic and transcriptomics, we found that Pb2+ exposure stimulated the membrane integrity deterioration and nucleotide metabolism obstruction of P. oxalicum. Correspondingly, P. oxalicum could produce higher levels of gamma-aminobutyric acid (GABA) to enhance the adaptive cellular machineries under Pb2+ stress. While the MIPP process improved extracellular Pb2+ mineralization, consequently alleviating the nucleotide metabolism inhibition and membrane deterioration. Multi-omics results suggested that GABA degradation pathway was stimulated for arginine biosynthesis and TCA cycle after Pb2+ mineralization. These results provided new biomolecular information underlying the Pb2+ exposure biotoxicities to microorganisms in MIPP before the application of this approach in environmental Pb2+ remediation.
Collapse
Affiliation(s)
- Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
22
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
23
|
Elagamey E, Abellatef MA, Arafat MY. Proteomic insights of chitosan mediated inhibition of Fusarium oxysporum f. sp. cucumerinum. J Proteomics 2022; 260:104560. [DOI: 10.1016/j.jprot.2022.104560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
|
24
|
Righetti L, Gottwald S, Tortorella S, Spengler B, Bhandari DR. Mass Spectrometry Imaging Disclosed Spatial Distribution of Defense-Related Metabolites in Triticum spp. Metabolites 2022; 12:48. [PMID: 35050170 PMCID: PMC8780301 DOI: 10.3390/metabo12010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Fusarium Head Blight is the most common fungal disease that strongly affects Triticum spp., reducing crop yield and leading to the accumulation of toxic metabolites. Several studies have investigated the plant metabolic response to counteract mycotoxins accumulation. However, information on the precise location where the defense mechanism is taking place is scarce. Therefore, this study aimed to investigate the specific tissue distribution of defense metabolites in two Triticum species and use this information to postulate on the metabolites' functional role, unlocking the "location-to-function" paradigm. To address this challenge, transversal cross-sections were obtained from the middle of the grains. They were analyzed using an atmospheric-pressure (AP) SMALDI MSI source (AP-SMALDI5 AF, TransMIT GmbH, Giessen, Germany) coupled to a Q Exactive HF (Thermo Fisher Scientific GmbH, Bremen, Germany) orbital trapping mass spectrometer. Our result revealed the capability of (AP)-SMALDI MSI instrumentation to finely investigate the spatial distribution of wheat defense metabolites, such as hydroxycinnamic acid amides, oxylipins, linoleic and α-linoleic acids, galactolipids, and glycerolipids.
Collapse
Affiliation(s)
- Laura Righetti
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
- Food and Drug Department, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Sven Gottwald
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, 06084 Perugia, Italy;
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
- Gandaki Prvince Academy of Science and Technology, Pokhara 33700, Nepal
| |
Collapse
|
25
|
Hosseini SMK, Alizadeh F, Nouripour-Sisakht S, Khodavandi A. Synergistic interaction of fluconazole/sodium bicarbonate on the inhibition of Candida glabrata phospholipase gene. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. mSystems 2021; 6:e0082221. [PMID: 34427507 PMCID: PMC8407381 DOI: 10.1128/msystems.00822-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida auris is a recently described multidrug-resistant pathogenic fungus that is increasingly responsible for health care-associated outbreaks across the world. Bloodstream infections of this fungus cause death in up to 70% of cases. Aggravating this scenario, the disease-promoting mechanisms of C. auris are poorly understood. Fungi release extracellular vesicles (EVs) that carry a broad range of molecules, including proteins, lipids, carbohydrates, pigments, and RNA, many of which are virulence factors. Here, we carried out a comparative molecular characterization of C. auris and Candida albicans EVs and evaluated their capacity to modulate effector mechanisms of host immune defense. Using proteomics, lipidomics, and transcriptomics, we found that C. auris released EVs with payloads that were significantly different from those of EVs released by C. albicans. EVs released by C. auris potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C. albicans had no effect. C. albicans EVs primed macrophages for enhanced intracellular yeast killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from both C. auris and C. albicans induced the activation of bone marrow-derived dendritic cells. Together, our findings show distinct profiles and properties of EVs released by C. auris and by C. albicans and highlight the potential contribution of C. auris EVs to the pathogenesis of this emerging pathogen. IMPORTANCECandida auris is a recently described multidrug-resistant pathogenic fungus that is responsible for outbreaks across the globe, particularly in the context of nosocomial infections. Its virulence factors and pathogenesis are poorly understood. Here, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris are a disease-promoting factor. We describe the production of EVs by C. auris and compare their biological activities against those of the better-characterized EVs from C. albicans. C. auris EVs have immunoregulatory properties, of which some are opposite those of C. albicans EVs. We also explored the cargo and structural components of those vesicles and found that they are remarkably distinct compared to EVs from C. auris’s phylogenetic relative Candida albicans.
Collapse
|
27
|
Escobar-Niño A, Morano Bermejo IM, Carrasco Reinado R, Fernandez-Acero FJ. Deciphering the Dynamics of Signaling Cascades and Virulence Factors of B. cinerea during Tomato Cell Wall Degradation. Microorganisms 2021; 9:microorganisms9091837. [PMID: 34576732 PMCID: PMC8466851 DOI: 10.3390/microorganisms9091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ascomycete Botrytis cinerea is one of the most relevant plant pathogenic fungi, affecting fruits, flowers, and greenhouse-grown crops. The infection strategy used by the fungus comprises a magnificent set of tools to penetrate and overcome plant defenses. In this context, the plant-pathogen communication through membrane receptors and signal transduction cascades is essential to trigger specific routes and the final success of the infection. In previous reports, proteomics approaches to B. cinerea signal transduction cascades changes in response to different carbon source and plant-based elicitors have been performed. Analyzing the secretome, membranome, phosphoproteome, and the phosphomembranome. Moreover, phenotypic changes in fungal biology was analyzed, specifically toxin production. To obtain the whole picture of the process and reveal the network from a system biology approach, this proteomic information has been merged with the phenotypic characterization, to be analyzed using several bioinformatics algorithms (GO, STRING, MCODE) in order to unravel key points in the signal transduction regulation crucial to overcome plant defenses, as well as new virulence/pathogenicity factors that could be used as therapeutic targets in the control of the gray mold rot disease. A total of 1721 and 663 exclusive or overexpressed proteins were identified under glucose (GLU) and deproteinized tomato cell walls (TCW), summarizing all of the protein identifications under phenotypic characterized stages. Under GO analysis, there are more biological process and molecular functions described in GLU, highlighting the increase in signaling related categories. These results agree with the high number of total identified proteins in GLU, probably indicating a more varied and active metabolism of the fungus. When analyzing only GO annotations related with signal transduction, it was revealed that there were proteins related to TOR signaling, the phosphorelay signal transduction system, and inositol lipid-mediated signaling, only under GLU conditions. On the contrary, calcium-mediated signaling GO annotation is only present between the proteins identified under TCW conditions. To establish a potential relationship between expressed proteins, cluster analyses showed 41 and 14 clusters under GLU and TCW conditions, confirming an increase in biological activity in GLU, where we identified a larger number of clusters related to transcription, translation, and cell division, between others. From these analyses, clusters related to signal transduction and clusters related to mycotoxin production were found, which correlated with the phenotypic characterization. The identification of the proteins encompassed in each condition and signal transduction cascade would provide the research community with new information about the B. cinerea infection process and potential candidates of pathogenicity/virulence factors, overcoming plant defenses, and new therapeutic targets.
Collapse
|
28
|
Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C, Martinant JP, Rogowsky PM, Widiez T. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. J Cell Biol 2021; 220:212519. [PMID: 34323919 PMCID: PMC8327379 DOI: 10.1083/jcb.202010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Andrea R M Calhau
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Veronica La Padula
- Centre Technologique des Microstructures, Université de Lyon 1, Lyon, France
| | - Nathanaël M A Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Claire Lionnet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
29
|
Padder SA, Ramzan A, Tahir I, Rehman RU, Shah AH. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Crit Rev Microbiol 2021; 48:1-20. [PMID: 34213983 DOI: 10.1080/1040841x.2021.1935447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commensal fungus-Candida albicans turn pathogenic during the compromised immunity of the host, causing infections ranging from superficial mucosal to dreadful systemic ones. C. albicans has evolved various adaptive measures which collectively contribute towards its enhanced virulence. Among fitness attributes, metabolic flexibility and vigorous stress response are essential for its pathogenicity and virulence. Metabolic flexibility provides a means for nutrient assimilation and growth in diverse host microenvironments and reduces the vulnerability of the pathogen to various antifungals besides evading host immune response(s). Inside the host micro-environments, C. albicans efficiently utilizes the multiple fermentable and non-fermentable carbon sources to sustain and proliferate in glucose deficit conditions. The utilization of alternative carbon sources further highlights the importance of understanding these pathways as the attractive and potential therapeutic target. A thorough understanding of metabolic flexibility and adaptation to environmental stresses is warranted to decipher in-depth insights into virulence and molecular mechanisms of fungal pathogenicity. In this review, we have attempted to provide a detailed and recent understanding of some key aspects of fungal biology. Particular focus will be placed on processes like nutrient assimilation and utilization, metabolic adaptability, virulence factors, and host immune response in C. albicans leading to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Asiya Ramzan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Departments of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
30
|
Gonçales RA, Salamanca AL, Júnior LR, E Silva KS, de Vasconcelos EJ, Dos Reis TF, Castro RC, C Ruy PD, Romagnoli B, Ruiz J, Pereira M, de A Soares CM, Coelho PS. In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp. Future Microbiol 2021; 16:589-606. [PMID: 33998266 DOI: 10.2217/fmb-2020-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.
Collapse
Affiliation(s)
- Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ayda Lm Salamanca
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Luiz Rb Júnior
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Kleber Sf E Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Elton Jr de Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Ricardo C Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Patrícia de C Ruy
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Bárbara Romagnoli
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Jerônimo Ruiz
- Fundação Oswaldo Cruz, Instituto Rene Rachaou (IRR), Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Célia M de A Soares
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Paulo Sr Coelho
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
31
|
Li SH, Gu LS, Qu XY, Zhang T, Li CX, Mai RM, Liao LS, Zhang FF, Luo XM, Zhao S, Feng JX. Involvement of phospholipase PLA 2 in production of cellulase and xylanase by Penicillium oxalicum. Appl Microbiol Biotechnol 2021; 105:679-694. [PMID: 33394158 DOI: 10.1007/s00253-020-11065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Phospholipases play vital roles in immune and inflammatory responses in mammals and plants; however, knowledge of phospholipase functions in fungi is limited. In this study, we investigated the effects of deleting predicted phospholipase genes on cellulase and xylanase production, and morphological phenotype, in Penicillium oxalicum. Individual deletion of nine of the ten predicted phospholipase genes resulted in alteration of cellulase and xylanase production, and the morphological phenotypes, to various degrees. The mutant ∆POX07277 lost 22.5 to 82.8% of cellulase (i.e., filter paper cellulase, carboxymethylcellulase, and p-nitrophenyl-β-cellobiosidase) and xylanase production, whereas p-nitrophenyl-β-glucopyranosidase production increased by 5.8-127.8 fold. POX07277 (P. oxalicum gene No. 07277) was predicted to encode phospholipase A2 and was found to negatively affect the sporulation of P. oxalicum. Comparative transcriptomic and quantitative reverse transcription-PCR analysis indicated that POX07277 dynamically affected the expression of cellulase and xylanase genes and the regulatory genes for fungal sporulation, under micro-crystalline cellulose induction. POX07277 was required for the expression of the known regulatory gene PoxCxrB (cellulolytic and xylanolytic regulator B in P. oxalicum), which is involved in cellulase and xylanase gene expression in P. oxalicum. Conversely, POX07277 expression was regulated by PoxCxrB. These findings will aid the understanding of phospholipase functions and provide novel insights into the mechanism of fungal cellulase and xylanase gene expression. KEY POINTS : • The roles of phospholipases were investigated in Penicillium oxalicum. • POX07277 (PLA2) is required for the expression of cellulase and xylanase genes. • PoxCxrB dynamically regulated POX07277 expression.
Collapse
Affiliation(s)
- Shi-Huan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Li-Sha Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xiao-Yi Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Rong-Ming Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
32
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
García-Carnero LC, Martínez-Álvarez JA, Salazar-García LM, Lozoya-Pérez NE, González-Hernández SE, Tamez-Castrellón AK. Recognition of Fungal Components by the Host Immune System. Curr Protein Pept Sci 2021; 21:245-264. [PMID: 31889486 DOI: 10.2174/1389203721666191231105546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A Martínez-Álvarez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Luis M Salazar-García
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Alma K Tamez-Castrellón
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
34
|
Li JX, Xu J, Ruan JC, Meng HM, Su H, Han XF, Lu M, Li FL, Wang SA. Disrupting a phospholipase A 2 gene increasing lipid accumulation in the oleaginous yeast Yarrowia lipolytica. J Appl Microbiol 2020; 130:100-108. [PMID: 32648664 DOI: 10.1111/jam.14779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Phospholipase A2 (PLA2 ) is a diverse superfamily that hydrolyzes fatty acyl ester bonds at the sn-2 position of phospholipids. The correlation between phospholipid metabolism and the anabolism of neutral lipids remains unclear in yeasts. This study aims to explore the effects of PLA2 on lipid accumulation in the oleaginous yeast Yarrowia lipolytica. METHODS AND RESULTS This study identified an actively expressed phospholipase A2 gene (PLA2-3, YAIL0_E16060g) in Y. lipolytica by quantitative PCR analysis. The gene PLA2-3 was disrupted in the strain po1gΔKu70 by homologous recombination and in the strain po1g-G3 by a CRISPR-Cas9 system, which caused an increase in stress sensitivity while the cell growth was not altered under fermentative conditions. Lipid production was performed in both flasks and bioreactors. The results showed that the lipid titre and lipid content were improved over 25% and 8-30%, respectively, in PLA2-3 disrupted strains compared to the controls. CONCLUSIONS Disruption of the phospholipase PLA2-3 gene could effectively improve lipid production in Y. lipolytica. SIGNIFICANCE AND IMPACT OF THE STUDY This study presented a strategy on improving the lipid production of oleaginous yeasts and a similar strategy might be used in other oleaginous microbes.
Collapse
Affiliation(s)
- J X Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Xu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Department of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, China
| | - J C Ruan
- Zhejiang Zhenyuan Share Co., Ltd, Hangzhou, China
| | - H M Meng
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - H Su
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - X F Han
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - M Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - F L Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - S A Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
35
|
Huang Y, Li Y, Li D, Bi Y, Prusky DB, Dong Y, Wang T, Zhang M, Zhang X, Liu Y. Phospholipase C From Alternaria alternata Is Induced by Physiochemical Cues on the Pear Fruit Surface That Dictate Infection Structure Differentiation and Pathogenicity. Front Microbiol 2020; 11:1279. [PMID: 32695073 PMCID: PMC7339947 DOI: 10.3389/fmicb.2020.01279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
To investigate the mechanisms of phospholipase C (PLC)-mediated calcium (Ca2+) signaling in Alternaria alternata, the regulatory roles of PLC were elucidated using neomycin, a specific inhibitor of PLC activity. Three isotypes of PLC designated AaPLC1, AaPLC2, and AaPLC3 were identified in A. alternata through genome sequencing. qRT-PCR analysis showed that fruit wax extracts significantly upregulated the expression of all three PLC genes in vitro. Pharmacological experiments showed that neomycin treatment led to a dose-dependent reduction in spore germination and appressorium formation in A. alternata. Appressorium formation was stimulated on hydrophobic and pear wax-coated surfaces but was significantly inhibited by neomycin treatment. The appressorium formation rates of neomycin treated A. alternata on hydrophobic and wax-coated surfaces decreased by 86.6 and 47.4%, respectively. After 4 h of treatment, exogenous CaCl2 could partially reverse the effects of neomycin treatment. Neomycin also affected mycotoxin production in alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tentoxin (TEN), with exogenous Ca2+ partially reversing these effects. These results suggest that PLC is required for the growth, infection structure differentiation, and secondary metabolism of A. alternata in response to physiochemical signals on the pear fruit surface.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dongmei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.,Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yupeng Dong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
37
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
38
|
Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother 2019; 118:109340. [PMID: 31545284 DOI: 10.1016/j.biopha.2019.109340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
It is necessary to design a reasonable drug delivery system(DDS) for targeted release to overcome the potential toxicity and poor selectivity of anti-tumor drug. How a drug is released from a DDS is a critical issue that determines whether the DDS is designed successfully. We all know that the microenvironment of tumors is quite different from normal tissues, such as its acidic environment, different expression levels of some enzymes, etc. These features are widely used in the design of DDSs and play an important role in the drug release process in vivo. Numerous DDSs have been designed and synthesized. This article attention to how drugs are released from DDSs. We summarizes and classify the characteristic enzymes and chemical bonds used in the drug release process by browsing a large number of papers, and describes how they are applied in DDSs with specific examples. By understanding these acid-sensitive chemical bonds and over-expressed enzymes in tumors, different DDSs can be designed for different drug structures to solve specific problems of anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lv
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
39
|
Jiang YX, Shi WJ, Ma DD, Zhang JN, Ying GG, Zhang H, Ong CN. Dydrogesterone exposure induces zebrafish ovulation but leads to oocytes over-ripening: An integrated histological and metabolomics study. ENVIRONMENT INTERNATIONAL 2019; 128:390-398. [PMID: 31078873 DOI: 10.1016/j.envint.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Dydrogesterone (DDG) is a synthetic progestin widely used in numerous gynecological diseases. DDG has been shown to disturb fish reproduction, however, the mechanism is still unclear. Here we studied the histological changes and differences of metabolome between exposed and control fish gonads after exposure of zebrafish (Danio rerio) embryos to 2.8, 27.6, and 289.8 ng/L DDG until sexual maturity for a total of 140 days. Dydrogesterone exposure led to male-biased zebrafish sex ratios. Histological examination revealed that DDG induced postovulatory follicles and atretic follicles in the ovary of the female fish. Postovulatory follicles indicated the occurrence of ovulation. DDG also increased spermatids and spermatozoa in the male fish testis, suggesting promotion of spermatogenesis. Ovarian metabolome showed that DDG increased the concentrations of free amino acids, urea, putrescine, free fatty acids, acylcarnitines, lysophospholipids, and other metabolites catabolized from phospholipids. Most of these metabolites are biodegradation products of proteins and lipids, suggesting the existence of ovulated oocytes over-ripening. Further, DDG upregulated arachidonic acid (AA) and its 5‑lipoxygenase (5-LOX) metabolites 5‑oxo‑6,8,11,14‑eicosatetraenoic acid (5-oxo-ETE) in the ovary, which could lead to suppression of AA cyclooxygenase (COX) metabolite prostaglandin F2α (PGF2α). It is believed that AA induced oocyte maturation, while 5-oxo-ETE and related metabolites in purinergic signaling promoted ovulation. Whereas, the suppression of PGF2α production might block spawning and damaged follicular tissue digestion, which explained the oocytes over-ripening and atretic follicles in the treated ovary. Overall, our results suggested that DDG exposure induced zebrafish oocyte maturation and ovulation but led to oocytes over-ripening via the AA metabolic pathway and purinergic signaling.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Choon-Nam Ong
- School of Public Health, National University of Singapore, 117547, Singapore.
| |
Collapse
|
40
|
CgHog1-Mediated CgRds2 Phosphorylation Alters Glycerophospholipid Composition To Coordinate Osmotic Stress in Candida glabrata. Appl Environ Microbiol 2019; 85:AEM.02822-18. [PMID: 30635387 DOI: 10.1128/aem.02822-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Under stress conditions, Hog1 is required for cell survival through transiently phosphorylating downstream targets and reprogramming gene expression. Here, we report that Candida glabrata Hog1 (CgHog1) interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, in response to osmotic stress. Additionally, we found that deletion of CgRDS2 led to decreases in cell growth and cell survival by 23.4% and 39.6%, respectively, at 1.5 M NaCl, compared with levels of the wild-type strain. This is attributed to significant downregulation of the expression levels of glycerophospholipid metabolism genes. As a result, the content of total glycerophospholipid decreased by 30.3%. Membrane integrity also decreased 47.6% in the Cgrds2Δ strain at 1.5 M NaCl. In contrast, overexpression of CgRDS2 increased the cell growth and cell survival by 10.2% and 6.3%, respectively, owing to a significant increase in the total glycerophospholipid content and increased membrane integrity by 27.2% and 12.1%, respectively, at 1.5 M NaCl, compared with levels for the wild-type strain. However, a strain in which the CgRDS2 gene encodes the replacement of Ser64 and Thr97 residues with alanines (Cgrds22A ), harboring a CgRds2 protein that was not phosphorylated by CgHog1, failed to promote glycerophospholipid metabolism and membrane integrity at 1.5 M NaCl. Thus, the above results demonstrate that CgHog1-mediated CgRds2 phosphorylation enhanced glycerophospholipid composition and membrane integrity to resist osmotic stress in C. glabrata IMPORTANCE This study explored the role of CgHog1-mediated CgRds2 phosphorylation in response to osmotic stress in Candida glabrata CgHog1 interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, under osmotic stress. Phosphorylated CgRds2 plays an important role in increasing glycerophospholipid composition and membrane integrity, thereby enhancing cell growth and survival.
Collapse
|
41
|
Non-Mammalian Prdx6 Enzymes (Proteins with 1-Cys Prdx Mechanism) Display PLA₂ Activity Similar to the Human Orthologue. Antioxidants (Basel) 2019; 8:antiox8030052. [PMID: 30832204 PMCID: PMC6466579 DOI: 10.3390/antiox8030052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mammalian peroxiredoxin class 6 (Prdx6) are bifunctional enzymes. Non-mammalian Prdx6 enzymes display Cys-based peroxidase activity, but to date their putative phospholipase A2 (PLA2 activities) has not been experimentally investigated. Initially, we observed that five non-mammalian Prdx6 enzymes (enzymes from Arabidopsis thaliana (AtPER1), Triticum aestivum (TaPER1), Pseudomonas aeruginosa (PaLsfA) and Aspergillus fumigatus (AfPrx1 and AfPrxC)) present features compatible with PLA2 activities in mammalian Prdx6 by amino acid sequences alignment and tertiary structure modeling. Employing unilamellar liposomes with tracer amounts of [3H]-1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and thin layer chromatography, all the tested non-mammalian Prdx6 enzymes displayed PLA2 activities, with values ranging from 3.4 to 6.1 nmol/min/mg protein. It was previously shown that Thr177 phosphorylation of human Prdx6 increases its PLA2 activity, especially at neutral pH. Therefore, we investigated if human Erk2 kinase could also phosphorylate homologous Thr residues in non-mammalian Prdx6 proteins. We observed phosphorylation of the conserved Thr in three out of the five non-mammalian Prdx enzymes by mass spectrometry. In the case of the mitochondrial Prdx6 from A. fumigatus (AfPrxC), we also observed phosphorylation by western blot, and as a consequence, the PLA2 activity was increased in acidic and neutral conditions by the human Erk2 kinase treatment. The possible physiological meanings of these PLA2 activities described open new fields for future research.
Collapse
|