1
|
Dixit Y, Yadav P, Asnani H, Sharma AK. CRISPR/Cas9-Engineering for Increased Amylolytic Potential of Microbes for Sustainable Wastewater Treatment: A Review. Curr Microbiol 2024; 82:44. [PMID: 39690340 DOI: 10.1007/s00284-024-04024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Amylases are pivotal enzymes with extensive industrial applications, including food processing, textile manufacturing, pharmaceuticals, and biofuel production. Traditional methods for enhancing amylase production in microbial strains often lack precision and efficiency. The advent of CRISPR/Cas9 technology has revolutionized genetic engineering, offering precise and targeted modifications to microbial genomes. This review explores the potential of CRISPR/Cas9 for improving amylase production, highlighting its advantages over conventional methods. This review discusses the mechanism of CRISPR/Cas9, the identification and targeting of key genes involved in amylase synthesis and regulation, and the optimization of expression systems. Additionally, current review examines case studies demonstrating successful CRISPR/Cas9 applications in various microbial hosts. The review also delves into the integration of CRISPR/Cas9 in wastewater treatment, where genetically engineered amylolytic strains enhance the degradation of complex organic pollutants. Despite the promising prospects, challenges such as off-target effects and regulatory considerations remain. This review provides a comprehensive overview of the current advancements, challenges, and future directions in the application of CRISPR/Cas9 technology for amylase production and environmental biotechnology.
Collapse
Affiliation(s)
- Yatika Dixit
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Preeti Yadav
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Hitakshi Asnani
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Arun Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India.
| |
Collapse
|
2
|
Aggarwal PR, Muthamilarasan M, Choudhary P. Millet as a promising C4 model crop for sustainable biofuel production. J Biotechnol 2024; 395:110-121. [PMID: 39343056 DOI: 10.1016/j.jbiotec.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The rapid depletion of conventional fuel resources and rising energy demand has accelerated the search for alternative energy sources. Further, the expanding need to use bioenergy crops for sustainable fuel production has enhanced the competition for agricultural land, raising the "food vs. fuel" competition. Considering this, producing bioenergy crops on marginal land has a great perspective for achieving sustainable bioenergy production and mitigating the negative impacts of climate change. C4 crops are dual-purpose crops with better efficiency to fix atmospheric CO2 and convert solar energy into lignocellulosic biomass. Of these, millets have gained worldwide attention due to their climate resilience and nutraceutical properties. Due to close synteny with contemporary C4 bioenergy crops, millets are being considered a model crop for studying diverse agronomically important traits associated with biomass production. Millets can be cultivated on marginal land with minimum fertilizer inputs and maximum biomass production. In this regard, advanced molecular approaches, including marker-assisted breeding, multi-omics approaches, and gene-editing technologies, can be employed to genetically engineer these crops for enhanced biofuel production efficiency. The current study aims to provide an overview of millets as a sustainable bioenergy source and underlines the significance of millets as a C4 model to elucidate the genes and pathways involved in lignocellulosic biomass production using advanced molecular biology approaches.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
4
|
Garg D, Samota MK, Kontis N, Patel N, Bala S, Rosado AS. Revolutionizing biofuel generation: Unleashing the power of CRISPR-Cas mediated gene editing of extremophiles. Microbiol Res 2023; 274:127443. [PMID: 37399654 DOI: 10.1016/j.micres.2023.127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Molecular biology techniques like gene editing have altered the specific genes in micro-organisms to increase their efficiency to produce biofuels. This review paper investigates the outcomes of Clustered regularly interspaced short palindromic repeats (CRISPR) for gene editing in extremophilic micro-organisms to produce biofuel. Commercial production of biofuel from lignocellulosic waste is limited due to various constraints. A potential strategy to enhance the capability of extremophiles to produce biofuel is gene-editing via CRISPR-Cas technology. The efficiency of intracellular enzymes like cellulase, hemicellulose in extremophilic bacteria, fungi and microalgae has been increased by alteration of genes associated with enzymatic activity and thermotolerance. extremophilic microbes like Thermococcus kodakarensis, Thermotoga maritima, Thermus thermophilus, Pyrococcus furiosus and Sulfolobus sp. are explored for biofuel production. The conversion of lignocellulosic biomass into biofuels involves pretreatment, hydrolysis and fermentation. The challenges like off-target effect associated with use of extremophiles for biofuel production is also addressed. The appropriate regulations are required to maximize effectiveness while minimizing off-target cleavage, as well as the total biosafety of this technique. The latest discovery of the CRISPR-Cas system should provide a new channel in the creation of microbial biorefineries through site- specific gene editing that might boost the generation of biofuels from extremophiles. Overall, this review study highlights the potential for genome editing methods to improve the potential of extremophiles to produce biofuel, opening the door to more effective and environmentally friendly biofuel production methods.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | | | - Nicholas Kontis
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Niketan Patel
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Alexandre Soares Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia; Computational Bioscience Research Center, Biological and Environmental Science and, Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia.
| |
Collapse
|
5
|
Contiliani DF, Nebó JFCDO, Ribeiro RV, Landell MGDA, Pereira TC, Ming R, Figueira A, Creste S. Drought-triggered leaf transcriptional responses disclose key molecular pathways underlying leaf water use efficiency in sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1182461. [PMID: 37223790 PMCID: PMC10200899 DOI: 10.3389/fpls.2023.1182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.
Collapse
Affiliation(s)
- Danyel F. Contiliani
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| | | | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Tiago C. Pereira
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Ray Ming
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Silvana Creste
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
7
|
Cavelius P, Engelhart-Straub S, Mehlmer N, Lercher J, Awad D, Brück T. The potential of biofuels from first to fourth generation. PLoS Biol 2023; 21:e3002063. [PMID: 36996247 PMCID: PMC10063169 DOI: 10.1371/journal.pbio.3002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.
Collapse
Affiliation(s)
- Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Selina Engelhart-Straub
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Johannes Lercher
- Chair of Technical Chemistry II, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| |
Collapse
|
8
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Boti MA, Athanasopoulou K, Adamopoulos PG, Sideris DC, Scorilas A. Recent Advances in Genome-Engineering Strategies. Genes (Basel) 2023; 14:129. [PMID: 36672870 PMCID: PMC9859587 DOI: 10.3390/genes14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
In October 2020, the chemistry Nobel Prize was awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the discovery of a new promising genome-editing tool: the genetic scissors of CRISPR-Cas9. The identification of CRISPR arrays and the subsequent identification of cas genes, which together represent an adaptive immunological system that exists not only in bacteria but also in archaea, led to the development of diverse strategies used for precise DNA editing, providing new insights in basic research and in clinical practice. Due to their advantageous features, the CRISPR-Cas systems are already employed in several biological and medical research fields as the most suitable technique for genome engineering. In this review, we aim to describe the CRISPR-Cas systems that have been identified among prokaryotic organisms and engineered for genome manipulation studies. Furthermore, a comprehensive comparison between the innovative CRISPR-Cas methodology and the previously utilized ZFN and TALEN editing nucleases is also discussed. Ultimately, we highlight the contribution of CRISPR-Cas methodology in modern biomedicine and the current plethora of available applications for gene KO, repression and/or overexpression, as well as their potential implementation in therapeutical strategies that aim to improve patients' quality of life.
Collapse
Affiliation(s)
| | | | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | | |
Collapse
|
10
|
Abdulrachman D, Champreda V, Eurwilaichitr L, Chantasingh D, Pootanakit K. Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277. J Biotechnol 2022; 355:53-64. [PMID: 35788357 DOI: 10.1016/j.jbiotec.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93%) among the three Cpf1s. It was further investigated for its ability to delete a 1.7kb and a 0.5kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40%. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.
Collapse
Affiliation(s)
- Dede Abdulrachman
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, Thailand
| | - Lily Eurwilaichitr
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, Thailand
| | - Duriya Chantasingh
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, Thailand.
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
11
|
Simultaneous Saccharification and Fermentation of Empty Fruit Bunches of Palm for Bioethanol Production Using a Microbial Consortium of S. cerevisiae and T. harzianum. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A simultaneous saccharification and fermentation (SSF) optimization process was carried out on pretreated empty fruit bunches (EFBs) by employing the Response Surface Methodology (RSM). EFBs were treated using sequential acid-alkali pretreatment and analyzed physically by a scanning electron microscope (SEM). The findings revealed that the pretreatment had changed the morphology and the EFBs’ structure. Then, the optimum combination of enzymes and microbes for bioethanol production was screened. Results showed that the combination of S. cerevisiae and T. harzianum and enzymes (cellulase and β-glucosidase) produced the highest bioethanol concentration with 11.76 g/L and a bioethanol yield of 0.29 g/g EFB using 4% (w/v) treated EFBs at 30 °C for 72 h. Next, the central composite design (CCD) of RSM was employed to optimize the SSF parameters of fermentation time, temperature, pH, and inoculum concentration for higher yield. The analysis of optimization by CCD predicted that 9.72 g/L of bioethanol (0.46 g/g ethanol yield, 90.63% conversion efficiency) could be obtained at 72 h, 30 °C, pH 4.8, and 6.79% (v/v) of inoculum concentration using 2% (w/v) treated EFBs. Results showed that the fermentation process conducted using the optimized conditions produced 9.65 g/L of bioethanol, 0.46 g/g ethanol yield, and 89.56% conversion efficiency, which was in close proximity to the predicted CCD model.
Collapse
|
12
|
An Overview of the production and prospect of polyhydroxyalkanote (PHA)-based biofuels: Opportunities and limitations. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
14
|
Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ. Carbon Nanotube-Mediated Plasmid DNA Delivery in Rice Leaves and Seeds. Int J Mol Sci 2022; 23:ijms23084081. [PMID: 35456898 PMCID: PMC9028948 DOI: 10.3390/ijms23084081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas gene editing technologies offer the potential to modify crops precisely; however, in vitro plant transformation and regeneration techniques present a bottleneck due to the lengthy and genotype-specific tissue culture process. Ideally, in planta transformation can bypass tissue culture and directly lead to transformed plants, but efficient in planta delivery and transformation remains a challenge. This study investigates transformation methods that have the potential to directly alter germline cells, eliminating the challenge of in vitro plant regeneration. Recent studies have demonstrated that carbon nanotubes (CNTs) loaded with plasmid DNA can diffuse through plant cell walls, facilitating transient expression of foreign genetic elements in plant tissues. To test if this approach is a viable technique for in planta transformation, CNT-mediated plasmid DNA delivery into rice tissues was performed using leaf and excised-embryo infiltration with reporter genes. Quantitative and qualitative data indicate that CNTs facilitate plasmid DNA delivery in rice leaf and embryo tissues, resulting in transient GFP, YFP, and GUS expression. Experiments were also initiated with CRISPR-Cas vectors targeting the phytoene desaturase (PDS) gene for CNT delivery into mature embryos to create heritable genetic edits. Overall, the results suggest that CNT-based delivery of plasmid DNA appears promising for in planta transformation, and further optimization can enable high-throughput gene editing to accelerate functional genomics and crop improvement activities.
Collapse
|
15
|
Liu H, Zhou P, Qi M, Guo L, Gao C, Hu G, Song W, Wu J, Chen X, Chen J, Chen W, Liu L. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 2022; 13:1886. [PMID: 35393407 PMCID: PMC8991263 DOI: 10.1038/s41467-022-29560-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is widely employed as a cell factory for the production of biofuels. However, product toxicity has hindered improvements in biofuel production. Here, we engineer the actin cytoskeleton in S. cerevisiae to increase both the cell growth and production of n-butanol and medium-chain fatty acids. Actin cable tortuosity is regulated using an n-butanol responsive promoter-based autonomous bidirectional signal conditioner in S. cerevisiae. The budding index is increased by 14.0%, resulting in the highest n-butanol titer of 1674.3 mg L-1. Moreover, actin patch density is fine-tuned using a medium-chain fatty acid responsive promoter-based autonomous bidirectional signal conditioner. The intracellular pH is stabilized at 6.4, yielding the highest medium-chain fatty acids titer of 692.3 mg L-1 in yeast extract peptone dextrose medium. Engineering the actin cytoskeleton in S. cerevisiae can efficiently alleviate biofuels toxicity and enhance biofuels production.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Banu JR, Kumar G, Chattopadhyay I. Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech 2021; 11:429. [PMID: 34603908 DOI: 10.1007/s13205-021-02962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| | - Gopalakrishnan Kumar
- Faculty of Science and Technology, Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Forus, Box 8600, 4036 Stavanger, Norway
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| |
Collapse
|
17
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
18
|
Bhattacharjee G, Gohil N, Lam NL, Singh V. CRISPR-based diagnostics for detection of pathogens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:45-57. [PMID: 34127201 DOI: 10.1016/bs.pmbts.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved sensitivity and superior specificity associated with the use of molecular assays has improved the fate of disease diagnosis by bestowing the clinicians with outcomes that are both rapid and precise. In recent years, CRISPR has made considerable progress in in vitro diagnostic platform which has paved its way for developing rapid and sensitive CRISPR-based diagnostic tools. Improved perception and better understanding of diverse CRISPR-Cas systems has broadened the reach of CRISPR applications for not just early detection of pathogens but also for early onset of diseases such as cancer. The inherent allele specificity of CRISPR is the predominant reason for its application in designing a diagnostic-tool that is field-deployable, portable, sensitive, specific and rapid. In this chapter, we highlight various CRISPR-based diagnostic platforms, its applications, challenges and future prospects of the CRISPR-Cas system.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Navya Lavina Lam
- The J. David Gladstone Institutes, San Francisco, CA, United States
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
19
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
20
|
Lin SC, Wu HL, Yeh LY, Yang CC, Kao SY, Chang KW. Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21249442. [PMID: 33322437 PMCID: PMC7764723 DOI: 10.3390/ijms21249442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated deaths worldwide. Family members in miR-371/372/373 miRNA cluster, which is localized at human chromosome 19q13.4, are co-expressed in both human stem cells and malignancies. The individual miRNA in this cluster are also involved in modulating the pathogenesis of malignancies as either oncogenes or suppressors. The 19q13 region is frequently gained in head and neck cancers. High expression of miR-372 and miR-373 are survival predictors for OSCC. However, the role of the miR-371/372/373 cluster in oral carcinogenesis remains to be fully investigated. We use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system to establish OSCC cell subclones that had the miR-371/372/373 cluster deleted. In addition, further subclones were established that had the promoter of this cluster deleted. Concordant silencing in SAS cells of miR-371/372/373 decreased oncogenic potential, increased cisplatin sensitivity, activated p53, and upregulated the expression of Bad and DKK1. We also employed the CRISPR/dCas9 synergistic activation mediator system, which allowed robust transcriptional activation of the whole miR-371/372/373 cistron. Upregulation of endogenous miR-371/372/372 expression increased both oncogenicity and drug resistance. These were accompanied by a slight activation of AKT, β-catenin, and Src. This study identifies the oncogenic role of the miR-371/372/373 cluster in OSCC. Using CRISPR based strategy can be a powerful paradigm that will provide mechanistic insights into miRNA cluster functionality, which will also likely help the development of targeting options for malignancies.
Collapse
Affiliation(s)
- Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsiao-Li Wu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Li-Yin Yeh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Fax: +886-2-28264053
| |
Collapse
|
21
|
Ceccato-Antonini SR, Covre EA. From baker's yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane. FEMS Yeast Res 2020; 20:6021367. [PMID: 33406233 DOI: 10.1093/femsyr/foaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
The peculiarities of Brazilian fuel ethanol fermentation allow the entry of native yeasts that may dominate over the starter strains of Saccharomyces cerevisiae and persist throughout the sugarcane harvest. The switch from the use of baker's yeast as starter to selected budding yeasts obtained by a selective pressure strategy was followed by a wealth of genomic information that enabled the understanding of the superiority of selected yeast strains. This review describes how the process of yeast selection evolved in the sugarcane-based bioethanol industry, the selection criteria and recent advances in genomics that could advance the fermentation process. The prospective use of genetically modified yeast strains, specially designed for increased robustness and product yield, with special emphasis on those obtained by the CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome-editing approach, is discussed as a possible solution to confer higher performance and stability to the fermentation process for fuel ethanol production.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| | - Elizabete Aparecida Covre
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| |
Collapse
|
22
|
Dai Y, Wang ZA, Li Y, Wang J, Ren J, Zhang P, Liu X. Genome engineering and synthetic biology for biofuels: A bibliometric analysis. Biotechnol Appl Biochem 2020; 67:824-834. [DOI: 10.1002/bab.2069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yexin Dai
- School of Environmental Science and Engineering Tianjin University Tianjin People's Republic of China
| | - Zhipeng A. Wang
- Division of Genetics Department of Medicine Brigham and Women's Hospital Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Yang Li
- School of Environmental Science and Engineering Tianjin University Tianjin People's Republic of China
| | - Jiao Wang
- School of Environmental Science and Engineering Tianjin University Tianjin People's Republic of China
| | - Jun Ren
- School of Environmental Science and Engineering Tianjin University Tianjin People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering Tianjin Agricultural University Tianjin People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering Tianjin University Tianjin People's Republic of China
| |
Collapse
|
23
|
Ahmadi F, Quach ABV, Shih SCC. Is microfluidics the "assembly line" for CRISPR-Cas9 gene-editing? BIOMICROFLUIDICS 2020; 14:061301. [PMID: 33262863 PMCID: PMC7688342 DOI: 10.1063/5.0029846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Acclaimed as one of the biggest scientific breakthroughs, the technology of CRISPR has brought significant improvement in the biotechnological spectrum-from editing genetic defects in diseases for gene therapy to modifying organisms for the production of biofuels. Since its inception, the CRISPR-Cas9 system has become easier and more versatile to use. Many variants have been found, giving the CRISPR toolkit a great range that includes the activation and repression of genes aside from the previously known knockout and knockin of genes. Here, in this Perspective, we describe efforts on automating the gene-editing workflow, with particular emphasis given on the use of microfluidic technology. We discuss how automation can address the limitations of gene-editing and how the marriage between microfluidics and gene-editing will expand the application space of CRISPR.
Collapse
Affiliation(s)
| | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514) 848-2424 x7579
| |
Collapse
|
24
|
Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnol Adv 2020; 42:107579. [PMID: 32593775 DOI: 10.1016/j.biotechadv.2020.107579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
Abstract
Recent advances in amylolytic strain engineering for starch-to-ethanol conversion have provided a platform for the development of raw starch consolidated bioprocessing (CBP) technologies. Several proof-of-concept studies identified improved enzyme combinations, alternative feedstocks and novel host strains for evaluation and application under fermentation conditions. However, further research efforts are required before this technology can be scaled up to an industrial level. In this review, different CBP approaches are defined and discussed, also highlighting the role of auxiliary enzymes for a supplemented CBP process. Various achievements in the development of amylolytic Saccharomyces cerevisiae strains for CBP of raw starch and the remaining challenges that need to be tackled/pursued to bring yeast raw starch CBP to industrial realization, are described. Looking towards the future, it provides potential solutions to develop more cost-effective processes that include cheaper substrates, integration of the 1G and 2G economies and implementing a biorefinery concept where high-value products are also derived from starchy substrates.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|