1
|
Wu X, Jiang B, Zhang Y, Wang Q, Ma Y. Identification and genomic analysis of a pathogenic circovirus associated with maricultured Scophthalmus maximus L. in China. Virus Res 2024; 347:199428. [PMID: 38942295 PMCID: PMC11292549 DOI: 10.1016/j.virusres.2024.199428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In China, a novel pathogen within the genus Circovirus has been identified as a causative agent of the 'novel acute hemorrhage syndrome' (NAHS) in aquacultured populations of turbot (Scophthalmus maximus L.). Histopathological examination using light microscopy revealed extensive necrosis within the cardiac, splenic, and renal tissues of the afflicted fish. Utilizing transmission electron microscopy (TEM), we detected the presence of circovirus particles within the cytoplasm of these cells, with the virions consistently exhibiting a spherical morphology of 20-40 nm in diameter. TEM inspections confirmed the predominance of these virions in the heart, spleen, and kidney. Subsequent molecular characterization through polymerase chain reaction (PCR) analysis corroborated the TEM findings, with positive signals in the aforementioned tissues, in stark contrast to the lack of detection in gill, fin, liver, and intestinal tissues. The TEM observations, supported by PCR electrophoresis data, strongly suggest that the spleen and kidney are the primary targets of the viral infection. Further characterization using biophysical, biochemical assays, and genomic sequencing confirmed the viral classification within the genus Circovirus, resulting in the nomenclature of turbot circovirus (TurCV). The current research endeavors to shed light on the pathogenesis of this pathogen, offering insights into the infection mechanisms of TurCV in this novel piscine host, thereby contributing to the broader understanding of its impact on turbot health and aquaculture.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Boyin Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| |
Collapse
|
2
|
Xia F, Liu Y, Wei L, Shao S, Zhang Y, Ma Y, Wang Q. Long-chain unsaturated fatty acids sensor controlling the type III/VI secretion system is essential for Edwardsiella piscicida infection. Microbiol Res 2024; 285:127770. [PMID: 38788352 DOI: 10.1016/j.micres.2024.127770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Edwardsiella piscicida is an acute marine pathogen that causes severe damage to the aquaculture industry worldwide. The pathogenesis of E. piscicida is dependent mainly on the type III secretion system (T3SS) and type VI secretion system (T6SS), both of which are critically regulated by EsrB and EsrC. In this study, we revealed that fatty acids influence T3SS expression. Unsaturated fatty acids (UFAs), but not saturated fatty acids (SFAs), directly interact with EsrC, which abolishes the function of EsrC and results in the turn-off of T3/T6SS. Moreover, during the in vivo colonization of E. piscicida, host fatty acids were observed to be transported into E. piscicida through FadL and to modulate the expression of T3/T6SS. Furthermore, the esrCR38G mutant blocked the interaction between EsrC and UFAs, leading to dramatic growth defects in DMEM and impaired colonization in HeLa cells and zebrafish. In conclusion, this study revealed that the interaction between UFAs and EsrC to turn off T3/T6SS expression is essential for E. piscicida infection.
Collapse
Affiliation(s)
- Feng Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, China.
| |
Collapse
|
3
|
He J, Liu S, Fang Q, Gu H, Hu Y. The Thioredoxin System in Edwardsiella piscicida Contributes to Oxidative Stress Tolerance, Motility, and Virulence. Microorganisms 2023; 11:827. [PMID: 37110252 PMCID: PMC10145099 DOI: 10.3390/microorganisms11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Jiaojiao He
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Su Liu
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingjian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
4
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
5
|
Gao ZY, Song YL, Li XT, Li TH, Lu CH, Shen YM. Effects of hydrolysable tannins from Terminalia citrina on type III secretion system (T3SS) and their intestinal metabolite urolithin B represses Salmonella T3SS through Hha–H-NS–HilD–HilC–RtsA–HilA regulatory pathway. Microb Pathog 2022; 173:105837. [DOI: 10.1016/j.micpath.2022.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
|
6
|
Transposon insertion sequencing analysis unveils novel genes involved in luxR expression and quorum sensing regulation in Vibrio alginolyticus. Microbiol Res 2022; 267:127243. [DOI: 10.1016/j.micres.2022.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
|
7
|
Xiao G, Zheng X, Li J, Yang Y, Yang J, Xiao N, Liu J, Sun Z. Contribution of the EnvZ/OmpR two-component system to growth, virulence and stress tolerance of colistin-resistant Aeromonas hydrophila. Front Microbiol 2022; 13:1032969. [PMID: 36312957 PMCID: PMC9597241 DOI: 10.3389/fmicb.2022.1032969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas hydrophila is an important zoonotic pathogen responsible for septicemia, diarrhea and gastroenteritis, and has attracted considerable attention. The EnvZ/OmpR two-component system (TCS) mediates environmental stress responses in gram-negative bacteria. We investigated the role of the TCS in A. hydrophila by comparing the characteristics of the parental (23-C-23), EnvZ/OmpR knockout (23-C-23:ΔEnvZ/OmpR), and complemented strains (23-C-23:CΔEnvZ/OmpR). Under non-stress conditions, the 23-C-23:ΔEnvZ/OmpR strain showed a significant decrease in growth rate compared to that of 23-C-23. Transcriptome and metabonomic analysis indicated that many metabolic pathways were remarkably affected in the ΔEnvZ/OmpR strain, including the TCA cycle and arginine biosynthesis. In addition, the virulence of the ΔEnvZ/OmpR strain was attenuated in a Kunming mouse model. The ΔEnvZ/OmpR strain exhibited notably reduced tolerance to environmental stresses, including high temperature, different pH conditions, oxidative stress, and high osmotic stress. The downregulated expression of genes related to cell metabolism, motility, and virulence in the ΔEnvZ/OmpR mutant strain was further validated by real-time quantitative PCR. Consequently, our data suggest that the EnvZ/OmpR TCS is required for growth, motility, virulence, and stress response in A. hydrophila, which has significant implications in the development of novel antibacterial and vaccine therapies targeting EnvZ/OmpR against A. hydrophila.
Collapse
Affiliation(s)
- Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Junqi Liu
- Veterinary Drug Laboratory, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Cai J, Hao Y, Xu R, Zhang Y, Ma Y, Zhang Y, Wang Q. Differential binding of LuxR in response to temperature gauges switches virulence gene expression in Vibrio alginolyticus. Microbiol Res 2022; 263:127114. [PMID: 35878491 DOI: 10.1016/j.micres.2022.127114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
Abstract
Vibrio pathogens must cope with temperature changes for proper thermo-adaptation and virulence gene expression. LuxR is a quorum-sensing (QS) master regulator of vibrios, playing roles in response to temperature alteration. However, the molecular mechanisms how LuxR is involved in adapting to different temperatures in bacteria have not been precisely elucidated. In this study, using chromatin immunoprecipitation and nucleotide sequencing (ChIP-seq), we identified 272 and 22 enriched loci harboring LuxR-binding peaks at ambient temperature (30 ˚C) and heat shock (42 ˚C) in the Vibrio alginolyticus genome, respectively. Analysis with the MEME (multiple EM for motif elicitation) algorithm indicated that the binding motifs of LuxR varied from temperatures. Three novel binding regions (the promoter of orf00292, orf00397 and fadD) of LuxR were identified and verified that the rising temperature causes the decreasing binding affinity of LuxR to these promoters. Meanwhile, the expression of orf00292, orf00397 and fadD were regulated by LuxR. Moreover, the weak binding of LuxR to the promoter of extracellular protease (Asp) was attributed to the attenuated Asp expression at thermal stress conditions. Taken together, our study demonstrated distinct binding characteristics of LuxR in response to temperature changes, thus highlighting LuxR as a thermo-sensor to switch and control virulence gene expression in V. alginolyticus.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Mao Q, Jiang J, Wu X, Ma Y, Zhang Y, Zhao Y, Zhang Y, Wang Q. Bifunctional alcohol/aldehyde dehydrogenase AdhE controls phospho-transferase system sugar utilization and virulence gene expression by interacting PtsH in Edwardsiella piscicida. Microbiol Res 2022; 260:127018. [DOI: 10.1016/j.micres.2022.127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
10
|
Jin M, He J, Li J, Hu Y, Sun D, Gu H. Edwardsiella piscicida YccA: A novel virulence factor essential to membrane integrity, mobility, host infection, and host immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 126:318-326. [PMID: 35654386 DOI: 10.1016/j.fsi.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
YccA is a hydrophobic protein with seven transmembrane domains. The function of YccA is largely unknown in pathogenic bacteria. Edwardsiella piscicide (formerly known as E. tarda) is an aquatic pathogen that can infect various economically important fish, including flounder (Paralichthys olivaceus) and tilapia (Oreochromis niloticus). In this study, we investigated the role of YccA in E. piscicida by the construction of a mar kerless yccA in-frame mutant strain, TX01ΔyccA. We found that (i) in comparison to the wild type TX01, TX01ΔyccA exhibited markedly compromised tolerance to high temperature and tobramycin; (ii) deletion of yccA significantly impaired the integrity of the cell membrane and retarded bacterial biofilm formation and mobility; (iii) deficiency of yccA reduced bacterial adhesion and invasion of fish cells and immune tissues, while the introduction of a trans-expressed yccA gene restored the lost virulence of TX01ΔyccA; and (iv) host immune responses induced by TX01 and TX01ΔyccA were different in terms of reactive oxygen species (ROS) levels and expression levels of cytokines. Taken together, the results of our study indicate that YccA is a novel virulence factor of E. piscicida, and YccA is essential for bacterial pathogenicity through evasion of the host's innate immune functions.
Collapse
Affiliation(s)
- Mengru Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Jiaojiao He
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, Michigan, 49783, USA
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
11
|
Yan L, Jin Y, Zhang B, Xu Y, Peng X, Qin S, Chen L. Diverse Aquatic Animal Matrices Play a Key Role in Survival and Potential Virulence of Non-O1/O139 Vibrio cholerae Isolates. Front Microbiol 2022; 13:896767. [PMID: 35801116 PMCID: PMC9255913 DOI: 10.3389/fmicb.2022.896767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae can cause pandemic cholera in humans. The waterborne bacterium is frequently isolated from aquatic products worldwide. However, current literature on the impact of aquatic product matrices on the survival and pathogenicity of cholerae is rare. In this study, the growth of eleven non-O1/0O139 V. cholerae isolates recovered from eight species of commonly consumed fish and shellfish was for the first time determined in the eight aquatic animal matrices, most of which highly increased the bacterial biomass when compared with routine trypsin soybean broth (TSB) medium. Secretomes of the V. cholerae isolates (draft genome size: 3,852,021–4,144,013 bp) were determined using two-dimensional gel electrophoresis (2DE-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Comparative secretomic analyses revealed 74 differential extracellular proteins, including several virulence- and resistance-associated proteins secreted by the V. cholerae isolates when grown in the eight matrices. Meanwhile, a total of 8,119 intracellular proteins were identified, including 83 virulence- and 8 resistance-associated proteins, of which 61 virulence-associated proteins were absent from proteomes of these isolates when grown in the TSB medium. Additionally, comparative genomic and proteomic analyses also revealed several strain-specific proteins with unknown functions in the V. cholerae isolates. Taken, the results in this study demonstrate that distinct secretomes and proteomes induced by the aquatic animal matrices facilitate V. cholerae resistance in the edible aquatic animals and enhance the pathogenicity of the leading waterborne pathogen worldwide.
Collapse
Affiliation(s)
- Lili Yan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinzhe Jin
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Peng
- Department of Biology, Archaea Centre, University of Copenhagen, Copenhagen, Denmark
| | - Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Si Qin
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Lanming Chen
| |
Collapse
|
12
|
Identification of Two Sel1-like Proteins in SPI-19 of Salmonella enterica Serovar Pullorum That Can Mediate Bacterial Infection Through T3SS. Microbiol Res 2022; 262:127085. [DOI: 10.1016/j.micres.2022.127085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023]
|
13
|
Wang H, Lin-Zhao Z, Jie-An D, Lin-Wang J, Tong-Yang B, Huan-Kang Y, Xing-Zhang D, Chao-Song H, Feng-Shan X, Dong-Qian A. The lip gene contributes to the virulence of Aeromonas veronii strain TH0426. Microb Pathog 2022; 167:105566. [PMID: 35568092 DOI: 10.1016/j.micpath.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Aeromonas veronii (A. veronii) is a pathogen that can infect aquatic organisms and mammals and has caused irrecoverable economic losses to the aquaculture industry. The results of an epidemiological investigation showed that the number of cases of A. veronii have increased gradually in recent years, and its drug resistance and virulence has shown an upward trend. In this study, we constructed an A. veronii mutant strain Δlip, by homologous recombination and studied its function. The results showed that there was no significant difference in the biofilm formation ability between the Δlip and the wild-type strain, but the toxicity of the Δlip to EPC cells and its ability to adhere to EPC cells were significantly reduced. The LD50 value of the Δlip to zebrafish was 7.40-fold higher than that of the wild-type strain. In addition, after 24 h and 72 h, the bacterial loads of the Δlip in the organs of crucian carp were significantly lower than those in the wild-type strain. In conclusion, the mutant strain Δlip led to a decrease in the adhesion and virulence of the wild-type strain, which lays a foundation to further understand lip gene function and the pathogenic mechanism of A. veronii.
Collapse
Affiliation(s)
- Hong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ze Lin-Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ding Jie-An
- Institute of Animal and Veterinary Medicine,Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Jing Lin-Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Bin Tong-Yang
- College of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Yuan Huan-Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong Xing-Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hai Chao-Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao Feng-Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai Dong-Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Yin K, Ma J, Jin P, Sun X, Liu X, Wang Q. Characterization of a novel live attenuated Edwardsiella piscicida vaccine based on the overexpressed type III secretion system and systematic deletion of the associated effectors. FISH & SHELLFISH IMMUNOLOGY 2020; 106:536-545. [PMID: 32763422 DOI: 10.1016/j.fsi.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida causes edwardsiellosis in a variety of fish species and leads to tremendous economic losses in the global aquaculture industries. Thus, effective and safe prevention and control of this bacterium are urgently needed to combat the related infections. Live attenuated vaccines (LAVs) effectively prevent infectious diseases. However, most of the existing E. piscicida LAVs are based on the deletion of genes encoding the translocon components of the type III secretion system (T3SS), the core virulence system, which is the most prominent protective bacterial antigen with the strongest immunogenicity. In this study, we systematically deleted all of the 9 established T3SS effectors in E. piscicida (aka 9Δ) and the rpoS gene encoding the alternative sigma factor, the esrB repressor (10Δ), then we overexpressed esrB and T3SS in E. piscicida to obtain the recombinant strain 10Δ/esrBOE. The modified strains 10Δ and 10Δ/esrBOE exhibited severe attenuation and in vivo colonization defects. Additionally, vaccination by intraperitoneal injection with 10Δ and 10Δ/esrBOE could significantly upregulate the expression of the antigen recognition related gene (TLR5) and the adaptive immune response-related gene (MHC II) in the spleen/kidney of turbot fish, and it also enhanced the hosts' serum bactericidal capacity. Finally, vaccination with 10Δ/esrBOE led to increased immune protection against the challenge of wild type E. piscicida EIB202 in turbot fish. Collectively, these findings demonstrated that 10Δ/esrBOE was a novel LAV strain and therefore a potential novel strategy for the construction of LAVs against bacterial pathogens.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiang Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida. Microbiol Res 2020; 239:126528. [PMID: 32622286 DOI: 10.1016/j.micres.2020.126528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/13/2020] [Indexed: 11/25/2022]
Abstract
Edwardsiella piscicida is a notorious pathogen infecting diverse kinds of fish and causes substantial economic losses in the global aquaculture industries. The EsrA-EsrB two-component system plays a critical role in the regulation of virulence genes expression, including type III and type VI secretion systems (T3/T6SSs). In this study, the putative regulators of esrB were screened by the transposon insertion sequencing (TIS) technology. As a result, MviN, a lipid II flippase, was identified as a modulator to upregulate esrB and downstream T3/T6SS gene expression in the earlier growth phases while downregulate esrB at the later stages. Complement or overexpression of the mviN restored the esrB as well as T3/T6SS expression in the ΔmviN mutant strain. Moreover, MviN also mediated the regulation of environmental osmotic pressure on the expression of esrB. MviN was also found to significantly influence the in vivo colonization of E. piscicida in turbot. Collectively, this study enhanced our understanding of pathogenesis and virulence regulatory network of E. piscicida.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|