1
|
Vu NT, Kim H, Hwang IS, Oh CS. Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2. Microbiol Res 2024; 290:127939. [PMID: 39471582 DOI: 10.1016/j.micres.2024.127939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the Myoviridae family, efficiently controls Pectobacterium spp. In the present study, we aimed to elucidate the mechanism of recognition of P. carotovorum Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to P. carotovorum Pcc21.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University. Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
3
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Wu J, Huang M, Liu H, Wu Y, Hu X, Wang J, Wang X. Engineering Escherichia coli to Efficiently Produce Colanic Acid with Low Molecular Mass and Viscosity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15811-15822. [PMID: 38975865 DOI: 10.1021/acs.jafc.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiaxin Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Huang D, Chen L, Wang Y, Wang Z, Wang J, Wang X. Characterization of a secondary hydroxy-acyltransferase for lipid A in Vibrio parahaemolyticus. Microbiol Res 2024; 283:127712. [PMID: 38593580 DOI: 10.1016/j.micres.2024.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.
Collapse
Affiliation(s)
- Danyang Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingyan Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Zhang Q, Zhou H, Jiang P, Wu L, Xiao X. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133942. [PMID: 38452675 DOI: 10.1016/j.jhazmat.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
8
|
Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol 2024; 262:129954. [PMID: 38336329 DOI: 10.1016/j.ijbiomac.2024.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
A wide variety of microorganisms secretes extracellular polymeric substances or commonly known as exopolysaccharides (EPS), which have been studied to influence plant growth via various mechanisms. EPS-producing microorganisms have been found to have positive effects on plant health such as by facilitating nutrient entrapment in the soil, or by improving soil quality, especially by helping in mitigating various abiotic stress conditions. The various types of microbial polysaccharides allow for the compartmentalization of the microbial community enabling them to endure undressing stress conditions. With the growing population, there is a constant need for developing sustainable agriculture where we could use various PGPR to help the plant cope with various stress conditions and simultaneously enhance the crop yield. These polysaccharides have also found application in various sectors, especially in the biomedical fields, manifesting their potential to act as antitumor drugs, play a significant role in immune evasion, and reveal various therapeutic potentials. These constitute high levels of bioactive polysaccharides which possess a wide range of implementation starting from industrial applications to novel food applications. In this current review, we aim at presenting a comprehensive study of how these microbial extracellular polymeric substances influence agricultural productivity along with their other commercial applications.
Collapse
Affiliation(s)
- Sushreeta Paul
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Anusree Goswami
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Kasimova AA, Shashkov AS, Perepelov AV, Babich T, Demina L, Popova N, Krivonos D, Safonov A. Structure elucidation and gene cluster of the O-antigen of Shewanella xiamenensis strain DCB-2-1 containing an amide of d-glucuronic acid with d-alanine and its bonding with U, Cr and V. Int J Biol Macromol 2023; 253:127546. [PMID: 37863146 DOI: 10.1016/j.ijbiomac.2023.127546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aim of this work was to examine the structure and gene cluster of O-OPS of S. xiamenensis strain DCB-2-1 and survey its conceivability for chelating uranyl, chromate and vanadate ions from solution. O-polysaccharide (OPS, O-antigen) was isolated from the lipopolysaccharide of Shewanella xiamenensis DCB-2-1 and studied by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and sugar analysis. The following structure of the brunched pentasaccharide was established: where d-β-GlcpA(d-Ala) is d-glucuronic acid acylated with NH group of d-Ala. The OPS structure established is unique among known bacterial polysaccharide structures. Interestingly, that dN-(d-glucuronoyl)-d-alanine derivative is not found in bacterial polysaccharides early. The O-antigen gene cluster of Shewanella xiamenensis strain DCB-2-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure. Based on the analysis of the IR spectra of the isolated polysaccharide DCB-2-1 and the products of its interaction with UO2(NO3)2 ∗ 6H2O, NH4VO3 and K2Cr2O7, a method of binding them can be proposed. Laboratory experiments show that the use of polysaccharide can be effective in removing uranyl, chromate and vanadate from solution.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tamara Babich
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Ludmila Demina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia
| | - Nadezhda Popova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia
| | - Danil Krivonos
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy proezd 18, 117246 Moscow, Russia; Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Alexey Safonov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia.
| |
Collapse
|
10
|
Liu W, Peng J, Zou S, Xu L, Cheng H, Wang Y, Chen Z, Zhou H. Regulation on Pathway Metabolic Fluxes to Enhance Colanic Acid Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13857-13868. [PMID: 37688786 DOI: 10.1021/acs.jafc.3c05046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Colanic acid (CA) is a natural polysaccharide macromolecule with rich and unique biological properties and is a promising candidate for use in food and cosmetics. To date, the efficient biosynthesis of CA and the influence of product accumulation on the strains used have yet to be precisely investigated. Herein, bottlenecks in the CA metabolic pathway were untangled by finely regulating the expression of manA, cpsG, fcl, and rcsA. Engineered strains produced CA at >1 g/L in shake flasks without dependence on cold temperatures, and it was verified in a 1 L bioreactor with a titer up to 18.64 g/L within 24 h. The accumulation of CA caused a decrease in the saturated fatty acid content (represented by C16:0 and C18:0) in the cell membrane. This study demonstrated pathway engineering for efficient CA production in cell factories and provided insights into the barriers and solutions faced in the biosynthesis of natural products.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jing Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Sini Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Liting Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
11
|
Frisinger FS, Jana B, Ortiz-Marquez JC, van Opijnen T, Donadio S, Guardabassi L. LptD depletion disrupts morphological homeostasis and upregulates carbohydrate metabolism in Escherichia coli. FEMS MICROBES 2023; 4:xtad013. [PMID: 37701421 PMCID: PMC10495129 DOI: 10.1093/femsmc/xtad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
In a previous in silico study, we identified an essential outer membrane protein (LptD) as an attractive target for development of novel antibiotics. Here, we characterized the effects of LptD depletion on Escherichia coli physiology and morphology. An E. coli CRISPR interference (CRISPRi) strain was constructed to allow control of lptD expression. Induction of the CRISPRi system led to ∼440-fold reduction of gene expression. Dose-dependent growth inhibition was observed, where strong knockdown effectively inhibited initial growth but partial knockdown exhibited maximum overall killing after 24 h. LptD depletion led to morphological changes where cells exhibited long, filamentous cell shapes and cytoplasmic accumulation of lipopolysaccharide (LPS). Transcriptional profiling by RNA-Seq showed that LptD knockdown led to upregulation of carbohydrate metabolism, especially in the colanic acid biosynthesis pathway. This pathway was further overexpressed in the presence of sublethal concentrations of colistin, an antibiotic targeting LPS, indicating a specific transcriptional response to this synergistic envelope damage. Additionally, exposure to colistin during LptD depletion resulted in downregulation of pathways related to motility and chemotaxis, two important virulence traits. Altogether, these results show that LptD depletion (i) affects E. coli survival, (ii) upregulates carbohydrate metabolism, and (iii) synergizes with the antimicrobial activity of colistin.
Collapse
Affiliation(s)
- Frida Svanberg Frisinger
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | | | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | | | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
12
|
van der Lans SPA, Janet-Maitre M, Masson FM, Walker KA, Doorduijn DJ, Janssen AB, van Schaik W, Attrée I, Rooijakkers SHM, Bardoel BW. Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing. Sci Rep 2023; 13:12618. [PMID: 37537263 PMCID: PMC10400624 DOI: 10.1038/s41598-023-39613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon Janet-Maitre
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frerich M Masson
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Attrée
- Bacterial Pathogenesis and Cellular Responses Group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, Grenoble, France
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Thieringer PH, Boyd ES, Templeton AS, Spear JR. Metapangenomic investigation provides insight into niche differentiation of methanogenic populations from the subsurface serpentinizing environment, Samail Ophiolite, Oman. Front Microbiol 2023; 14:1205558. [PMID: 37465028 PMCID: PMC10350532 DOI: 10.3389/fmicb.2023.1205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
14
|
Wu J, Huang M, Zhan Y, Liu M, Hu X, Wu Y, Qiao J, Wang Z, Li H, Wang J, Wang X. Regulating Cardiolipin Biosynthesis for Efficient Production of Colanic Acid in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37235531 DOI: 10.1021/acs.jafc.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Colanic acid has broad application prospects in the food and healthcare market due to its excellent physical properties and biological activities. In this study, we discovered that colonic acid production in Escherichia coli could be enhanced by regulating cardiolipin biosynthesis. Single deletion of clsA, clsB, or clsC related to cardiolipin biosynthesis in E. coli MG1655 only slightly increased colonic acid production, but double or triple deletion of these three genes in E. coli MG1655 increased colonic acid production up to 2.48-fold. Previously, we have discovered that truncating lipopolysaccharide by deletion of the waaLUZYROBSPGQ gene cluster and enhancing RcsA by deletion of genes lon and hns can increase colonic acid production in E. coli. Therefore, these genes together with clsA, clsB, or/and clsC were deleted in E. coli, and all the resulting mutants showed increased colonic acid production. The best colonic acid production was observed in the mutant WWM16, which is 126-fold higher than in the control MG1655. To further improve colonic acid production, the genes rcsA and rcsD1-466 were overexpressed in WWM16, and the resulting recombinant E. coli WWM16/pWADT could produce 44.9 g/L colonic acid, which is the highest titer reported to date.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
16
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
17
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
18
|
Öztürk FY, Darcan C, Kariptaş E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 2023; 54:259-277. [PMID: 36577889 PMCID: PMC9943865 DOI: 10.1007/s42770-022-00895-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.
Collapse
Affiliation(s)
- Fırat Yavuz Öztürk
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Medical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
19
|
Han D, Li W, Hou Z, Lin C, Xie Y, Zhou X, Gao Y, Huang J, Lai J, Wang L, Zhang L, Yang C. The chromosome-scale assembly of the Salvia rosmarinus genome provides insight into carnosic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:819-832. [PMID: 36579923 DOI: 10.1111/tpj.16087] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Wenliang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Zhuangwei Hou
- Shenzhen Branch Guangdong Laboratory for Lingnan Modern Agriculture/Genome Analysis Laboratory of the Ministry of Agriculture/Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaofang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, 510642, Guangzhou, China
| | - Yuan Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junwen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Li Wang
- Shenzhen Branch Guangdong Laboratory for Lingnan Modern Agriculture/Genome Analysis Laboratory of the Ministry of Agriculture/Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| |
Collapse
|
20
|
Huang D, Ji F, Tan X, Qiao J, Li H, Wang Z, Wang X. Free lipid A and full-length lipopolysaccharide coexist in Vibrio parahaemolyticus ATCC33846. Microb Pathog 2023; 174:105889. [PMID: 36435436 DOI: 10.1016/j.micpath.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Lipid A plays an important role in the pathogenicity and antimicrobial resistance of Vibrio parahaemolyticus, but little is known about the structure and biosynthesis of lipid A in V. parahaemolyticus. In this study, lipid A species were either directly extracted or obtained by the acid hydrolysis of lipopolysaccharide from V. parahaemolyticus ATCC33846 cells and analyzed by thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. Several lipid A species in V. parahaemolyticus cells were characterized, and two of these species were not connected to polysaccharides. One free lipid A species has the similar structure as the hexa-acylated lipid A in Escherichia coli, and the other is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain. Three lipid A species were isolated by the acid hydrolysis of lipopolysaccharide: the 1st one has the similar structure as the hexa-acylated lipid A in E. coli, the 2nd one is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain and a secondary 2-OH C12:0 acyl chain, and the 3rd one is equal to the 2nd species with a phosphoethanolamine modification. These results are important for understanding the biosynthesis of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
21
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|
22
|
Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic Engineering for Overproduction of Colanic Acid in Escherichia coli Mutant with Short Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8351-8364. [PMID: 35773212 DOI: 10.1021/acs.jafc.2c03053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colanic acid is a major exopolysaccharide existing in most Enterobacteriaceae when exposed to an extreme environment. Colanic acid possesses excellent physical properties and biological activities, which makes it a candidate in the food and healthcare market. Previous strategies for colanic acid overproduction in E. coli mainly focus on removing the negative regulator on colanic acid biosynthesis or overexpressing the rcsA gene to up-regulate the cps operon. In this study, modifications in metabolic pathways were implemented in E. coli mutant strains with shortened lipopolysaccharides to improve colanic acid production. First, ackA was deleted to remove the byproduct acetate and the effect of accumulated acetyl-phosphate on colanic acid production was investigated. Second, 11 genes responsible for O-antigen synthesis were deleted to reduce its competition for glucose-1-phosphate and UDP-galactose with colanic acid production. Third, uppS was overexpressed to supply lipid carriers for synthesizing a colanic acid repeat unit. Colanic acid production in the final engineered strain WZM008/pTrcS reached 11.68 g/L in a 2.0 L bioreactor, 3.54 times the colanic acid production by the WQM001 strain. The results provide insights for further engineering E. coli to maximize CA production.
Collapse
Affiliation(s)
- Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Qiao J, Zhan Y, Tan X, Liu Y, Hu X, Wang X. Colanic Acid: Biosynthetic Overproduction by Engineering Escherichia coli and Physical Property Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13881-13894. [PMID: 34763421 DOI: 10.1021/acs.jafc.1c04823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colanic acid has promising applications in food, cosmetic, and healthcare fields. In this study, a recombinant WQM003/pRAU was constructed by deleting genes lon and hns and overexpressing genes rcsA and galU in E. coli MG1655Δ(L-Q). After systematic optimization of fermentation conditions, colanic acid yield in WQM003/pRAU reached 19.79 g/L, the highest yield reported so far. The colanic acid produced by WQM003/pRAU was purified and its structure and physical properties were determined. This colanic acid shows a triple-helical structure and is stable up to 102 °C, and its melting temperature is 253.9 °C. This colanic acid shows a sphere-like chain conformation in aqueous solution. The viscosity of this colanic acid solution is related to concentration, shear rate, salt, temperature, and pH. At high concentrations, this colanic acid shows both viscous and elastic behaviors. These results suggest that the colanic acid produced by WQM003/pRAU has broad application prospects.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuantao Liu
- Hulunbeier Northeast Fufeng Biotechnology Co., Ltd., Hulunbeier 162650, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation. Appl Environ Microbiol 2021; 87:e0138921. [PMID: 34550763 DOI: 10.1128/aem.01389-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpression of the heterologous gene cluster phaCAB. The biosynthesis of the outer membrane (OM) consumes many nutrients and influences cell morphology. Here, we engineered the OM by disrupting all gene clusters relevant to the polysaccharide portion of lipopolysaccharide (LPS), colanic acid (CA), flagella, and/or fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components increased the PHB content to 83.0 wt% (PHB content percentage of dry cell weight), while the wild-type control produced only 1.5 wt% PHB. The increase was mainly due to the LPS truncation to Kdo2 (3-deoxy-d-manno-octulosonic acid)-lipid A, which resulted in 82.0 wt% PHB with a 25-fold larger cell volume, and disrupting CA resulted in 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features, including 69.1% less acetate, a 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm, and a higher broken cell ratio. Further detailed mechanism investigations showed that disrupting LPS caused global changes in envelope and cellular metabolism: (i) a sharp decrease in flagella, fimbria, and secretions; (ii) more elastic cells; (iii) much greater carbon flux toward acetyl coenzyme A (acetyl-CoA) and supply of cofactors, including NADP, NAD, and ATP; and (iv) a decrease in by-product acids but increase in γ-aminobutyric acid by activating σE factor. Disrupting CA, flagella, and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicate that engineering the OM is an effective strategy to enhance PHB production and highlight the applicability of OM engineering to increase microbial cell factory performance. IMPORTANCE Understanding the detailed influence of the OM on the cell envelope and cellular metabolism is important for optimizing the E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling the OM to enhance PHB accumulation as representative inclusion bodies. The results generated in this study give essential information for producing other inclusion bodies or chemicals which need more acetyl-CoA and cofactors but less by-product acids. This study is promising to provide new ideas for the improvement of microbial cell factories.
Collapse
|
25
|
Hu X, Zhang X, Luo S, Wu J, Sun X, Liu M, Wang X, Wang X. Enhanced Sensitivity of Salmonella to Antimicrobial Blue Light Caused by Inactivating rfaC Gene Involved in Lipopolysaccharide Biosynthesis. Foodborne Pathog Dis 2021; 18:599-606. [PMID: 34403268 DOI: 10.1089/fpd.2020.2888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella is a global foodborne pathogen that causes human diseases ranging from mild gastroenteritis to severe systemic infections. Recently, antimicrobial blue light (aBL) showed effective bactericidal activity against a variety of bacteria (e.g., Salmonella) with varying efficiency. However, the antimicrobial mechanism of aBL has not been fully elucidated. Our previous report showed that the outer membrane (OM) is a key target of aBL. The major component of the OM, lipopolysaccharide (LPS), may play a role in aBL bactericidal effect. Therefore, the influence of LPS truncation on the sensitivity of Salmonella Typhimurium SL1344 to aBL was investigated for the first time. First, the rfaC gene in the SL1344 strain likely involved in linking lipid A to the core region of LPS was inactivated and the influence on LPS structure was verified in the mutant strain SL1344ΔrfaC. SL1344ΔrfaC showed a significant increase in sensitivity to aBL, and the bactericidal efficiency exceeded 8 log CFU at an aBL dose of 383 J/cm2, while that of its parental SL1344 strain approached 4 log CFU. To discover the possible mechanism of higher sensitivity, the permeability of OM was determined. Compared to SL1344, SL1344ΔrfaC showed 2.7-fold higher permeability of the OM at 20 J/cm2, this may explain the higher vulnerability of the OM to aBL. Furthermore, the fatty acid profile was analyzed to reveal the detailed changes in the OM and inner membrane of the mutant. Results showed that the membrane lipids of SL1344ΔrfaC were markedly different to SL1344, indicating that change in fatty acid profile might mediate the enhancement of OM permeability and the increased sensitivity to aBL in SL1344ΔrfaC. Hence, we concluded that disruption of rfaC in Salmonella Typhimurium led to the formation of truncated LPS and thus enhanced the permeability of the OM, which contributed to the increased sensitivity to aBL.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiujuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuanghua Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
26
|
Qiao J, Tan X, Ren H, Wu Z, Hu X, Wang X. Construction of an Escherichia coli Strain Lacking Fimbriae by Deleting 64 Genes and Its Application for Efficient Production of Poly(3-Hydroxybutyrate) and l-Threonine. Appl Environ Microbiol 2021; 87:e0038121. [PMID: 33863704 PMCID: PMC8174762 DOI: 10.1128/aem.00381-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli contains 12 chaperone-usher operons for biosynthesis and assembly of various fimbriae. In this study, each of the 12 operons was deleted in E. coli MG1655, and the resulting 12 deletion mutants all grew better than the wild type, especially in the nutrient-deficient M9 medium. When the plasmid pBHR68 containing the key genes for polyhydroxyalkanoate production was introduced into these 12 mutants, each mutant synthesized more polyhydroxyalkanoate than the wild-type control. These results indicate that the fimbria removal in E. coli benefits cell growth and polyhydroxyalkanoate production. Therefore, all 12 chaperone-usher operons, including 64 genes, were deleted in MG1655, resulting in the fimbria-lacking strain WQM026. WQM026 grew better than MG1655, and no fimbria structures were observed on the surface of WQM026 cells. Transcriptomic analysis showed that in WQM026 cells, the genes related to glucose consumption, glycolysis, flagellar synthesis, and biosynthetic pathways of some key amino acids were upregulated, while the tricarboxylic acid cycle-related genes were downregulated. When pBHR68 was introduced into WQM026, huge amounts of poly-3-hydroxybutyrate were produced; when the plasmid pFW01-thrA*BC-rhtC, containing the key genes for l-threonine biosynthesis and transport, was transferred into WQM026, more l-threonine was synthesized than with the control. These results suggest that this fimbria-lacking E. coli WQM026 is a good host for efficient production of polyhydroxyalkanoate and l-threonine and has the potential to be developed into a valuable chassis microorganism. IMPORTANCE In this study, we investigated the interaction between the biosynthesis and assembly of fimbriae and intracellular metabolic networks in E. coli. We found that eliminating fimbriae could effectively improve the production of polyhydroxyalkanoate and l-threonine in E. coli MG1655. These results contribute to understanding the necessity of fimbriae and the advantages of fimbria removal for industrial microorganisms. The knowledge gathered from this study may be applied to the development of superior chassis microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
27
|
Qiao J, Tan X, Huang D, Li H, Wang Z, Ren H, Hu X, Wang X. Construction and Application of an Escherichia coli Strain Lacking 62 Genes Responsible for the Biosynthesis of Enterobacterial Common Antigen and Flagella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4153-4163. [PMID: 33787256 DOI: 10.1021/acs.jafc.1c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The biosynthesis of the enterobacterial common antigen and flagella in Escherichia coli consumes lots of substrates and energy. In this study, 12 genes responsible for the biosynthesis of the enterobacterial common antigen were deleted in E. coli MG1655, resulting in WQM021. WQM021 grew better than MG1655 in both rich LB medium and minimum M9 medium. Compared with MG1655, WQM021 showed higher membrane permeability and higher production efficiency for recombinant proteins, polyhydroxyalkanoate, and l-threonine. Transcriptome analysis revealed that genes relevant to glucose consumption, glycolysis, and flagellar synthesis were significantly upregulated in WQM021. Therefore, 50 genes responsible for flagellar biosynthesis were further deleted in WQM021, resulting in WQM022. WQM022 grew better and could synthesize more polyhydroxyalkanoate and l-threonine than WQM021. The results demonstrate that the productivity of E. coli can be efficiently improved when the enterobacterial common antigen and flagella are eliminated. This strategy has guiding significance in the optimization of other industrial products and microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Wang J, Ma W, Wang X. Insights into the structure of Escherichia coli outer membrane as the target for engineering microbial cell factories. Microb Cell Fact 2021; 20:73. [PMID: 33743682 PMCID: PMC7980664 DOI: 10.1186/s12934-021-01565-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is generally used as model bacteria to define microbial cell factories for many products and to investigate regulation mechanisms. E. coli exhibits phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae on the outer membrane which is a self-protective barrier and closely related to cellular morphology, growth, phenotypes and stress adaptation. However, these outer membrane associated molecules could also lead to potential contamination and insecurity for fermentation products and consume lots of nutrients and energy sources. Therefore, understanding critical insights of these membrane associated molecules is necessary for building better microbial producers. Here the biosynthesis, function, influences, and current membrane engineering applications of these outer membrane associated molecules were reviewed from the perspective of synthetic biology, and the potential and effective engineering strategies on the outer membrane to improve fermentation features for microbial cell factories were suggested.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Smith LM, Jackson SA, Malone LM, Ussher JE, Gardner PP, Fineran PC. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 2021; 6:162-172. [PMID: 33398095 DOI: 10.1038/s41564-020-00822-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Bacteria harbour multiple innate defences and adaptive CRISPR-Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR-Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR-Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR-Cas systems. Rcs-mediated repression of CRISPR-Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Genetics Otago, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. .,Genetics Otago, University of Otago, Dunedin, New Zealand. .,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|