1
|
Arabnejad M, Tothill IE, Chianella I. Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer. BIOSENSORS 2024; 14:624. [PMID: 39727890 DOI: 10.3390/bios14120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA). NSE and CEA are two serum proteins whose elevated levels have been associated with lung cancer. Hence, in this study, impedimetric biosensors (immunosensors) able to quantify NSE and CEA were developed as proof-of-concept devices for lung cancer diagnosis. The sensing platform exploited for the immunosensors comprises a novel combination of a magnetic platform, screen-printed gold electrode (SPGE), and magnetic nanobeads (MB). The MB were functionalized with antibodies to capture the analyte from the sample and to move it over the sensing area. The immunosensors were then developed by immobilizing another set of antibodies for either CEA or NSE on the SPGE through formation of self-assembled monolayer (SAM). The second set of antibodies enabled a sandwich assay to be formed on the surface of the sensor, while MB manipulation was applied during the sensor performance to depict a microfluidic system and increase antigen-antibody complex formation prior to CEA or NSE detection and quantification. The optimized immunosensors were successfully tested to measure various concentrations of CEA and NSE (0-100 ng/mL) in both phosphate buffer and 100% human serum samples. Clinically relevant detection limits of 0.26 ng/mL and 0.18 ng/mL in buffer and 0.76 ng/mL and 0.52 ng/mL in 100% serum for CEA and NSE, respectively, were achieved via electrochemical impedance spectroscopy with the use of potassium ferri/ferrocyanide as a redox probe. Hence, the two immunosensors demonstrated great potential as tools to be implemented for the early detection of lung cancer.
Collapse
Affiliation(s)
- Mahdi Arabnejad
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
- Silveray, Stockport Road West, Stockport SK6 2BP, UK
| | - Ibtisam E Tothill
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Iva Chianella
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
2
|
Guo L, Zhao Y, Huang Q, Huang J, Tao Y, Chen J, Li HY, Liu H. Electrochemical protein biosensors for disease marker detection: progress and opportunities. MICROSYSTEMS & NANOENGINEERING 2024; 10:65. [PMID: 38784375 PMCID: PMC11111687 DOI: 10.1038/s41378-024-00700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
The development of artificial intelligence-enabled medical health care has created both opportunities and challenges for next-generation biosensor technology. Proteins are extensively used as biological macromolecular markers in disease diagnosis and the analysis of therapeutic effects. Electrochemical protein biosensors have achieved desirable specificity by using the specific antibody-antigen binding principle in immunology. However, the active centers of protein biomarkers are surrounded by a peptide matrix, which hinders charge transfer and results in insufficient sensor sensitivity. Therefore, electrode-modified materials and transducer devices have been designed to increase the sensitivity and improve the practical application prospects of electrochemical protein sensors. In this review, we summarize recent reports of electrochemical biosensors for protein biomarker detection. We highlight the latest research on electrochemical protein biosensors for the detection of cancer, viral infectious diseases, inflammation, and other diseases. The corresponding sensitive materials, transducer structures, and detection principles associated with such biosensors are also addressed generally. Finally, we present an outlook on the use of electrochemical protein biosensors for disease marker detection for the next few years.
Collapse
Affiliation(s)
- Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601 China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056 China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou, 325000 China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
3
|
Patel V, Das E, Bhargava A, Deshmukh S, Modi A, Srivastava R. Ionogels for flexible conductive substrates and their application in biosensing. Int J Biol Macromol 2024; 254:127736. [PMID: 38183203 DOI: 10.1016/j.ijbiomac.2023.127736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Ionogels are highly conductive gels made from ionic liquids dispersed in a matrix made of organic or inorganic materials. Ionogels are known for high ionic conductivity, flexibility, high thermal and electrochemical stability. These characteristics make them suitable for sensing and biosensing applications. This review discusses about the two main constituents, ionic liquids and matrix, used to make ionogels and effect of these materials on the characteristics of ionogels. Here, the material properties like mechanical, electrochemical and stability are discussed for both polymer matrix and ionic liquid. We have briefly described about the fabrication methods like 3D printing, sol-gel, blade coating, spin coating, aerosol jet printing etc., used to make films or coating of these ionogels. The advantages and disadvantages of each method are also briefly summarized. Finally, the last section provides a few examples of application of flexible ionogels in areas like wearables, human-machine interface, electronic skin and detection of biological molecules.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Eatu Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Ameesha Bhargava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Sharvari Deshmukh
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Loni Kalbhor, Pune 412201, India
| | - Anam Modi
- G.N. Khalsa College, Matunga, Mumbai 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India.
| |
Collapse
|
4
|
Wang A, Li Y, You X, Zhang S, Zhou J, Liu H, Ding P, Chen Y, Qi Y, Liu Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor nanoarchitectonics with the Ag-rGO nanocomposites for the detection of receptor-binding domain of SARS-CoV-2 spike protein. J Solid State Electrochem 2023; 27:489-499. [PMID: 36466035 PMCID: PMC9707143 DOI: 10.1007/s10008-022-05330-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yuya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
5
|
Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022; 212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Iqbal
- Department of Electrical Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
6
|
Karunadasa KSP, Rathnayake D, Manoratne C, Pitawala A, Rajapakse G. A binder‐free composite of graphite and kaolinite as a stable working electrode for general electrochemical applications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Dananjali Rathnayake
- Postgraduate Institute of Science (PGIS) University of Peradeniya Peradeniya 20400 Sri Lanka
| | - Chinthan Manoratne
- Materials Technology Section Industrial Technology Institute Colombo 07, 00700 Sri Lanka
| | - Amarasooriya Pitawala
- Department of Geology Faculty of Science University of Peradeniya Peradeniya Sri Lanka
| | - Gamini Rajapakse
- Department of Chemistry Faculty of Science University of Peradeniya Peradeniya Sri Lanka
| |
Collapse
|
7
|
Thunkhamrak C, Chuntib P, Ounnunkad K, Banet P, Aubert PH, Saianand G, Gopalan AI, Jakmunee J. Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta 2020; 208:120389. [DOI: 10.1016/j.talanta.2019.120389] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022]
|
8
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rengaraj A, Haldorai Y, Hwang SK, Lee E, Oh MH, Jeon TJ, Han YK, Huh YS. A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry 2019; 128:211-217. [PMID: 31030173 DOI: 10.1016/j.bioelechem.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
In this study, an effective electrochemical sensor was developed for heparin detection using a protamine-conjugated graphene oxide/gold (GO/Au) composite. Protamine is an antidote that can act as an affinity ligand for heparin. The GO was used as support for signal amplification, and Au nanoparticles (NPs) were employed to immobilize the protamine. This Au NPs also increasing the electron transfer rate and enhancing the signal response during protamine-heparin integration. The proposed affinity sensor had a simple fabrication process, a low detection limit (0.9 nM), a wide linear range (1.9 × 10-7 M to 1.5 × 10-9 M), high stability, and high selectivity in the detection of heparin.
Collapse
Affiliation(s)
- Arunkumar Rengaraj
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea; Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Seoung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Eunseon Lee
- Animal Production Research and Development Division, National Institute of Animal Science, Republic of Korea
| | - Mi-Hwa Oh
- Animal Production Research and Development Division, National Institute of Animal Science, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
11
|
Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Indexed: 12/31/2022]
Abstract
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential.
Collapse
Affiliation(s)
- Nagappa L. Teradal
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
12
|
Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA. Graphene- gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools. Eur J Med Chem 2017; 139:349-366. [PMID: 28806615 DOI: 10.1016/j.ejmech.2017.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.
Collapse
Affiliation(s)
- Lina A Al-Ani
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammed A AlSaadi
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farkaad A Kadir
- Division of Human Biology, Faculty of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Najihah M Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
13
|
Ma Y, Shen XL, Wang HS, Tao J, Huang JZ, Zeng Q, Wang LS. MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I. Anal Biochem 2017; 520:9-15. [DOI: 10.1016/j.ab.2016.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
|
14
|
Lee S, Lim H, Ibrahim I, Jamil A, Pandikumar A, Huang N. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens Bioelectron 2017; 89:673-680. [DOI: 10.1016/j.bios.2015.12.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
|
15
|
|
16
|
Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK. Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E406. [PMID: 28773528 PMCID: PMC5456764 DOI: 10.3390/ma9060406] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nurhidayatullaili Muhd Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wan Jefrey Basirun
- Institute of Postgraduate Studies, Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| |
Collapse
|
17
|
Abo-Hamad A, AlSaadi MA, Hayyan M, Juneidi I, Hashim MA. Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Cruz SMA, Girão AF, Gonçalves G, Marques PAAP. Graphene: The Missing Piece for Cancer Diagnosis? SENSORS 2016; 16:s16010137. [PMID: 26805845 PMCID: PMC4732170 DOI: 10.3390/s16010137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Abstract
This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.
Collapse
Affiliation(s)
- Sandra M A Cruz
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - André F Girão
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Gil Gonçalves
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Paula A A P Marques
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
19
|
Fang YS, Huang XJ, Wang LS, Wang JF. An enhanced sensitive electrochemical immunosensor based on efficient encapsulation of enzyme in silica matrix for the detection of human immunodeficiency virus p24. Biosens Bioelectron 2015; 64:324-32. [DOI: 10.1016/j.bios.2014.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
|
20
|
Samanman S, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode. Anal Chim Acta 2015; 853:521-532. [DOI: 10.1016/j.aca.2014.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
|
21
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
22
|
Jang HD, Kim SK, Chang H, Choi JW. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron 2015; 63:546-551. [DOI: 10.1016/j.bios.2014.08.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/23/2014] [Accepted: 08/07/2014] [Indexed: 12/16/2022]
|
23
|
Ezhil Vilian A, Chen SM, Lou BS. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (l-lysine) biocomposite for the detection of H2O2 and iodate. Biosens Bioelectron 2014; 61:639-47. [DOI: 10.1016/j.bios.2014.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
24
|
Zhong GX, Wang P, Fu FH, Weng SH, Chen W, Li SG, Liu AL, Wu ZY, Zhu X, Lin XH, Lin JH, Xia XH. Electrochemical immunosensor for detection of topoisomerase based on graphene–gold nanocomposites. Talanta 2014; 125:439-45. [DOI: 10.1016/j.talanta.2014.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/01/2022]
|
25
|
Puri N, Niazi A, Srivastava AK. Synthesis and characterization of reduced graphene oxide supported gold nanoparticles-poly(pyrrole-co-pyrrolepropylic acid) nanocomposite-based electrochemical biosensor. Appl Biochem Biotechnol 2014; 174:911-25. [PMID: 24928550 DOI: 10.1007/s12010-014-0997-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/22/2014] [Indexed: 11/26/2022]
Abstract
A conducting poly(pyrrole-co-pyrrolepropylic acid) copolymer nanocomposite film (AuNP-PPy-PPa) incorporating gold nanoparticles (AuNP) was electrochemically grown using a single step procedure over electrochemically reduced graphene oxide (RGO) flakes deposited on a silane-modified indium-tin-oxide (ITO) glass plate. The RGO support base provided excellent mechanical and chemical stability to the polymer nanocomposite matrix. The porous nanostructure of AuNP-PPy-PPa/RGO provided a huge accessible area to disperse AuNP, and it avoided metallic agglomeration within the polymer matrix. The AuNP-PPy-PPa/RGO was characterized by high-resolution transmission electron microscopy (HRTEM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The pendant carboxyl group of AuNP-PPy-PPa/RGO was covalently bonded with myoglobin protein antibody, Ab-Mb, for the construction of a bioelectrode. Electrochemical impedance spectroscopy technique was used for the characterization of the bioelectrode and as an impedimetric biosensor for the detection of human cardiac biomarker, Ag-cMb. The bioelectrode exhibited a linear impedimetric response to Ag-cMb in the range of 10 ng mL(-1) to 1 μg mL(-1), in phosphate-buffered solution (PBS) (pH 7.4, 0.1 M KCl) with a sensitivity of 92.13 Ω cm(2) per decade.
Collapse
Affiliation(s)
- Nidhi Puri
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110012, India
| | | | | |
Collapse
|
26
|
Zhou N, Li J, Chen H, Liao C, Chen L. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+. Analyst 2014; 138:1091-7. [PMID: 23314195 DOI: 10.1039/c2an36405k] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple and sensitive electrochemical assay strategy of stripping voltammetry for mercury ions (Hg(2+)) detection is described based on the synergistic effect between ionic liquid functionalized graphene oxide (GO-IL) and gold nanoparticles (AuNPs). The AuNPs-GO-IL modified onto glassy carbon electrode (GCE) resulted in highly enhanced electron conductive nanostructured membrane and large electroactive surface area, which was excellently examined by scanning electron microscopy and cyclic voltammetry. After accumulating Hg(2+), anodic stripping voltammetry (ASV) was performed, and differential pulse voltammetry (DPV) was employed for signal recording of Hg(2+). Several main experimental parameters were optimized, i.e., deposition potential and time of AuNPs were -0.2 V and 180 s, respectively, and accumulation potential and time of Hg(2+) were -0.3 V and 660 s, respectively. Under the optimal conditions, this AuNPs-GO-IL-GCE sensor attained a good linearity in a wide range of 0.1-100 nM (R = 0.9808) between the concentration of the Hg(2+) standard and peak current. The limit of detection was estimated to be 0.03 nM at a signal-to-noise ratio of 3σ. A variety of common coexistent ions in water samples were investigated, showing no obvious interferences on the Hg(2+) detection. The practical application of the proposed sensor has been carried out and demonstrated as feasible for determination of trace levels of Hg(2+) in drinking and environmental water samples.
Collapse
Affiliation(s)
- Na Zhou
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | | | | | | | | |
Collapse
|
27
|
Wang Z, Wang H, Zhang Z, Yang X, Liu G. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.068] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Fang YS, Wang HY, Wang LS, Wang JF. Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites. Biosens Bioelectron 2014; 51:310-6. [DOI: 10.1016/j.bios.2013.07.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/17/2013] [Accepted: 07/20/2013] [Indexed: 02/07/2023]
|
29
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
30
|
Recent advances in graphite powder-based electrodes. Anal Bioanal Chem 2013; 405:3525-39. [DOI: 10.1007/s00216-013-6816-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/25/2022]
|
31
|
Zhou N, Chen H, Li J, Chen L. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0956-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Bora DK, Braun A, Erni R, Müller U, Döbeli M, Constable EC. Hematite–NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys Chem Chem Phys 2013; 15:12648-59. [DOI: 10.1039/c3cp52179f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
|
34
|
Cheng Y, Yuan R, Chai Y, Niu H, Cao Y, Liu H, Bai L, Yuan Y. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal Chim Acta 2012; 745:137-42. [DOI: 10.1016/j.aca.2012.08.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 10/28/2022]
|