1
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
2
|
Dujardin B, Ferreira de Sousa R, Gómez Ruiz JÁ. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA J 2023; 21:e07798. [PMID: 36742462 PMCID: PMC9887633 DOI: 10.2903/j.efsa.2023.7798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
EFSA assessed the relevance of seaweed and halophyte consumption to the dietary exposure to heavy metals (arsenic, cadmium, lead and mercury) and the iodine intake in the European population. Based on sampling years 2011-2021, there were 2,093 analytical data available on cadmium, 1,988 on lead, 1,934 on total arsenic, 920 on inorganic arsenic (iAs), 1,499 on total mercury and 1,002 on iodine. A total of 697 eating occasions on halophytes, seaweeds and seaweed-related products were identified in the EFSA Comprehensive European Food Consumption Database (468 subjects, 19 European countries). From seaweed consumption, exposure estimates for cadmium in adult 'consumers only' are within the range of previous exposure estimates considering the whole diet, while for iAs and lead the exposure estimates represent between 10% and 30% of previous exposures from the whole diet for the adult population. Seaweeds were also identified as important sources of total arsenic that mainly refers, with some exceptions, to organic arsenic. As regards iodine, from seaweed consumption, mean intakes above 20 μg/kg body weight per day were identified among 'consumers only' of Kombu and Laver algae. The impact of a future increase in seaweed consumption ('per capita') on the dietary exposure to heavy metals and on iodine intake will strongly depend on the seaweeds consumed. The exposure estimates of heavy metals and iodine intakes in 'consumers only' of seaweeds were similar to those estimated in a replacement scenario with selected seaweed-based foods in the whole population. These results underline the relevance of the current consumption of seaweeds in the overall exposure to different heavy metals and in the intake of iodine. Recommendations are provided for further work needed on different areas to better understand the relationship between seaweed consumption and exposure to heavy metals and iodine intake.
Collapse
|
3
|
Huang Z, Bi R, Musil S, Pétursdóttir ÁH, Luo B, Zhao P, Tan X, Jia Y. Arsenic species and their health risks in edible seaweeds collected along the Chinese coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157429. [PMID: 35863575 DOI: 10.1016/j.scitotenv.2022.157429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Edible seaweeds with a relatively high total arsenic concentration have been a global concern. As the largest seaweed producer, China contributes about 60 % of the global seaweed production. The present study investigated 20 seaweed species collected from representative seaweed farming sites in the six provinces along the Chinese coastline, of which Saccharina japonica, Undaria pinnatifida, Neopyropia spp., Gracilaria spp., Sargassum fusiforme were listed as the most consumed seaweeds in Food and Agriculture Organization of the United Nations (FAO). The inorganic arsenic (iAs) concentration in most of the seaweeds was below maximum limits (0.3 mg iAs/kg) as seaweed additives for infant food in the National Food Safety Standard of Pollutants in China (GB2762-2017, 2017), except for the species Sargassum, in which the iAs concentration significantly exceeded the limit and ranged from 15.1 to 83.7 mg/kg. Arsenic speciation in 4 cultivated seaweeds grown in both temperate and subtropical zones is reported for the first time. No significant differences in total As and iAs concentration were identified, except slightly higher total As concentration were found in Saccharina japonica growing in the temperate zone. The estimated daily intake (EDI) of toxic iAs via seaweed consumption was generally below the EFSA CONTAM Panel benchmark dose lower confidence limit (0.3 μg/kg bw/day) except for all Sargassum species where the EDI was significantly higher than 0.3 μg/kg bw/day. Moreover, the first-ever reported data on As speciation indicated very high iAs concentrations in Sargassum hemiphyllum and Sargassum henslowianum. To minimize the food chain iAs exposure, reducing both human intake of Sargassum spp. and the used of Sargassum spp. for animal feed is highly recommended. CAPSULE: This study showed that edible seaweed Sargassum spp. consumption may pose a health risk related to inorganic arsenic (iAs) exposure. The risk of iAs exposure via seaweed consumption or livestock is a concern that needs to be monitored. The arsenic accumulation and speciation may be predominantly species-dependent rather than environmental-dependent.
Collapse
Affiliation(s)
- Zhangxun Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ran Bi
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 60200 Brno, Czech Republic
| | | | - Bicheng Luo
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Puhui Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Xi Tan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
4
|
Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macroalgae are a biological group that has mainly been used in Asian countries; however, the interest shown by Western society is recent, its application in the industrial sector having increased in the last few decades. Seaweeds are filled with properties which are beneficial to our health. To use them as food and enhance these properties, heat has been used on them. This process alters the bioactive compounds. If we study the levels of moisture, they can vary according to the drying methods used. High values of moisture can lead to a short shelf life due to oxidation, microbial or enzyme activity, so controlling these values is highly recommended. Heat causes enzymatic activity as well as oxidation, which leads to degradation of phenolic compounds in comparison with freeze-drying, which causes fewer losses of these components. Due to the same occurrences, lipid content can also vary, modifying the bioactive compounds and their benefits. Pigments are some of the components most affected by heat, since, through this process, seaweeds or seaweed products can suffer a change in color. Iodine in macroalgae can decrease drastically; on the other hand, protein yield can be greatly enhanced. Some studies showed that the amount of arsenic in raw seaweeds was higher than when they were heat processed, and that arsenic values varied when different heat treatments were applied. Additionally, another study showed that heat can alter protein yield in specific species and have a different effect on other species.
Collapse
|
5
|
Schmidt L, Novo DLR, Druzian GT, Landero JA, Caruso J, Mesko MF, Flores EMM. Influence of culinary treatment on the concentration and on the bioavailability of cadmium, chromium, copper, and lead in seafood. J Trace Elem Med Biol 2021; 65:126717. [PMID: 33647737 DOI: 10.1016/j.jtemb.2021.126717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Seafood present important advantages for human nutrition, but it can also accumulate high levels of toxic and potentially toxic elements. Culinary treatments could influence seafood chemical element content and element bioavailability. In this study, the influence of culinary treatments on the total concentration and on the bioavailability of Cd, Cr, Cu and Pb in shark, shrimp, squid, oyster, and scallop was assessed. METHODS Boiling, frying, and sautéing with or without seasonings (salt, lemon juice and garlic) were evaluated. Total concentration and bioavailability of Cd, Cr, Cu and Pb in seafood after all these culinary treatments were compared with those in uncooked samples. Analytes were determined by triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). An alternative to express the results avoiding underestimated or overestimated values was proposed. RESULTS The analytes concentration in seafood without culinary treatment varied from 0.0030 μg g-1 (shrimp) to 0.338 μg g-1 (oyster) for Cd; 0.010 μg g-1 (squid) to 0.036 μg g-1 (oyster) for Cr; 0.088 μg g-1 (scallop) to 8.63 μg g-1 (oyster) for Cu, and < 0.005 μg g-1 (shrimp, squid and oyster) to 0.020 μg g-1 (shark) for Pb. Only Cd (in scallop) was influenced by culinary treatments (reduction from 37 to 53 % after boiling, frying, and sautéing). Bioavailability percentage varied from 11% (oyster) for Cd; 18% (oyster) to 41% (shark) for Cr; 6% (shark) for Cu, and 8% (oyster) for Pb. Bioavailability percentage was not influenced by culinary treatments. CONCLUSION Cadmium concentration was reduced in scallop after some culinary treatments (reduction o 37-53% after boiling, frying, and sautéing), but bioavailability percentage was not influenced. The employed analytical method was adequate for the purpose, presenting import results for food safety assessment about the influence of culinary treatments on metals concentration and bioavailability in seafood.
Collapse
Affiliation(s)
- Lucas Schmidt
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Diogo La Rosa Novo
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil; Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, 96160-000, Capão do Leão, RS, Brazil
| | - Gabriel Toneto Druzian
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Julio Alberto Landero
- Metallomics Center, Department of Chemistry, University of Cincinnati, 45221, Cincinnati, OH, USA
| | - Joseph Caruso
- Metallomics Center, Department of Chemistry, University of Cincinnati, 45221, Cincinnati, OH, USA
| | - Marcia Foster Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, 96160-000, Capão do Leão, RS, Brazil
| | | |
Collapse
|
6
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations - A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:943-960. [PMID: 31913614 PMCID: PMC7250045 DOI: 10.1021/acs.jafc.9b07532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, has led to the assumption of their nontoxicity. Recent toxicokinetic studies show that some organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to investigate and compare the bioavailability, metabolic transformation, and elimination from the body of organoarsenicals to the well-established physiological consequences of inorganic arsenic and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang B Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
7
|
Chen K, Roca M. Cooking effects on bioaccessibility of chlorophyll pigments of the main edible seaweeds. Food Chem 2019; 295:101-109. [PMID: 31174738 DOI: 10.1016/j.foodchem.2019.05.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022]
Abstract
Edible seaweeds are highly consumed food with a rich chlorophyll profile. Although seaweeds are mainly cooked ingested, the influence of cooking on the chlorophyll bioaccessibility remains unknown. In this research, cooked Nori, Sea Lettuce and Kombu were subjected to an in vitro digestion and following micellarization investigations. The processing of red seaweed does not affect the chlorophyll recovery, while cooking green and brown seaweeds implies an important increase in chlorophyll recovery after in vitro digestion. In this line, while cooking affects negatively the micellarization rate of chlorophyll derivatives in Nori and Kombu, it does not modify the micellarization in Sea Lettuce. Generally, the chlorophyll bioaccessibility of microwaved seaweeds is always higher than that of boiled ones. However, cooking improves the chlorophyll bioaccessibility in brown seaweeds, while decreases in red seaweeds. In conclusion, the characteristics of food matrix are the determinant factor on the chlorophyll bioaccessibility of cooked seaweeds.
Collapse
Affiliation(s)
- Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| |
Collapse
|
8
|
Camurati JR, Salomone VN. Arsenic in edible macroalgae: an integrated approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:1-12. [PMID: 31578125 DOI: 10.1080/10937404.2019.1672364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arsenic is a metalloid naturally present in marine environments. Various toxic elements including arsenic (As) are bioaccumulated by macroalgae. This metalloid is subsequently incorporated as arsenate into the organism due to similarity to phosphate. In recent decades, the use of macroalgae in food has increased as a result of their numerous benefits; however, As consumption may exert potential consequences for human health. The objective of this review was to discuss the articles published up to 2019 on As in seaweed, including key topics such as speciation, toxicity of the most common species in marine macroalgae, and their effects on human health. Further, this review will emphasize the extraction methods and analysis techniques most frequently used in seaweed and the need to develop certified reference materials (CRMs) in order to support the validation of analytical methodologies for As speciation in macroalgae. Finally, this review will discuss current legislation in relation to the risk associated with consumption. The number of articles found and the different approaches, biological, analytical and toxicological, show the growing interest there has been in this field in the last few years. In addition, this review reveals aspects of As chemistry that need further study, such as transformation of organic metalloid species during digestion and cooking, which necessitates analytical improvement and toxicological experiments. Taken together our findings may contribute to revision of current legislation on As content in edible seaweed relating to human health in a growing market.
Collapse
Affiliation(s)
- Julieta R Camurati
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
9
|
Mac Monagail M, Morrison L. Arsenic speciation in a variety of seaweeds and associated food products. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Calatayud M, Xiong C, Du Laing G, Raber G, Francesconi K, van de Wiele T. Salivary and Gut Microbiomes Play a Significant Role in in Vitro Oral Bioaccessibility, Biotransformation, and Intestinal Absorption of Arsenic from Food. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14422-14435. [PMID: 30403856 PMCID: PMC6300781 DOI: 10.1021/acs.est.8b04457] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 05/18/2023]
Abstract
The release of a toxicant from a food matrix during the gastrointestinal digestion is a crucial determinant of the toxicant's oral bioavailability. We present a modified setup of the human simulator of the gut microbial ecosystem (SHIME), with four sequential gastrointestinal reactors (oral, stomach, small intestine, and colon), including the salivary and colonic microbiomes. Naturally arsenic-containing rice, mussels, and nori seaweed were digested in the presence of microorganisms and in vitro oral bioaccessibility, bioavailability, and metabolism of arsenic species were evaluated following analysis by using HPLC/mass spectrometry. When food matrices were digested with salivary bacteria, the soluble arsenic in the gastric digestion stage increased for mussel and nori samples, but no coincidence impact was found in the small intestinal and colonic digestion stages. However, the simulated small intestinal absorption of arsenic was increased in all food matrices (1.2-2.7 fold higher) following digestion with salivary microorganisms. No significant transformation of the arsenic species occurred except for the arsenosugars present in mussels and nori. In those samples, conversions between the oxo arsenosugars were observed in the small intestinal digestion stage whereupon the thioxo analogs became major metabolites. These results expand our knowledge on the likely metabolism and oral bioavailabiltiy of arsenic during human digestion, and provide valuable information for future risk assessments of dietary arsenic.
Collapse
Affiliation(s)
- Marta Calatayud
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Chan Xiong
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
- (C.X.) Phone: +43 (0)316
380-5318; e-mail:
| | - Gijs Du Laing
- Department
of Green Chemistry and Technology, Ghent
University, 9000 Ghent, Belgium
| | - Georg Raber
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kevin Francesconi
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tom van de Wiele
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- (T.V.d.W.) Phone: +32 9
264 59 76; fax: + 32 9 264 62 48; e-mail:
| |
Collapse
|
11
|
|
12
|
Chi H, Zhang Y, Williams PN, Lin S, Hou Y, Cai C. In Vitro Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4710-4715. [PMID: 29633616 DOI: 10.1021/acs.jafc.7b06149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shrimp, a popular and readily consumed seafood, contains high concentrations of arsenic. However, few studies have focused on whether arsenic in the shrimp could be transformed during the cooking process and gastrointestinal digestion. In this study, a combined in vitro model [Unified Bioaccessibility Research Group of Europe (BARGE) Method-Simulator of Human Intestinal Microbial Ecosystem (UBM-SHIME)] was used to investigate arsenic bioaccessibility and its speciation in raw and cooked shrimps. The results showed that the cooking practices had little effect on the arsenic content and speciation. Bioaccessibility of arsenic in raw shrimp was at a high level, averaging 76.9 ± 4.28 and 86.7 ± 3.74% in gastric and small intestinal phases, respectively. Arsenic speciation was stable in all of the shrimp digestions, with nontoxic arsenobetaine (AsB) being the dominated speciation. The cooking practice significantly increased the bioaccessibility of arsenate ( p < 0.05) in shrimp digests, indicating the increase of the potential health risks.
Collapse
Affiliation(s)
- Haifeng Chi
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Youchi Zhang
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast BT9 7BL , United Kingdom
| | - Shanna Lin
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Yanwei Hou
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
| | - Chao Cai
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| |
Collapse
|
13
|
Chen S, Xu J, Chen G, Hu Q, Zhao L. Influence of Microwave Blanching on Arsenic Speciation and Bioaccessibility in Lentinus Edodes. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1405011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shuangyang Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiajia Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guitang Chen
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Chiocchetti G, Jadán-Piedra C, Vélez D, Devesa V. Metal(loid) contamination in seafood products. Crit Rev Food Sci Nutr 2017; 57:3715-3728. [DOI: 10.1080/10408398.2016.1161596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gabriela Chiocchetti
- Instituto de Agroquímica y Tecnología de los Alimentos, Paterna, Valencia, Spain
| | - Carlos Jadán-Piedra
- Instituto de Agroquímica y Tecnología de los Alimentos, Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de los Alimentos, Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de los Alimentos, Paterna, Valencia, Spain
| |
Collapse
|
15
|
Liu C, Lin H, Mi N, Xu Y, Song Y, Liu Z, Sui J. Effect of thermal processing on the concentration and bioaccessibility of rare earth elements in seaweed and oyster. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chune Liu
- College of Food Science and Engineering; Ocean University of China, Qingdao, 266003; China
- College of Ocean, China Agriculture University (Yantai), Yantai, 264670; China
| | - Hong Lin
- College of Food Science and Engineering; Ocean University of China, Qingdao, 266003; China
| | - Nasha Mi
- College of Food Science and Engineering; Ocean University of China, Qingdao, 266003; China
| | - Yue Xu
- College of Ocean, China Agriculture University (Yantai), Yantai, 264670; China
| | - Yan Song
- China National Center for Food Safety Risk Assessment, Beijing, Ñ00022; China
| | - Zhaoping Liu
- China National Center for Food Safety Risk Assessment, Beijing, Ñ00022; China
| | - Jianxin Sui
- College of Food Science and Engineering; Ocean University of China, Qingdao, 266003; China
| |
Collapse
|
16
|
Taylor VF, Jackson BP. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. CHEMOSPHERE 2016; 163:6-13. [PMID: 27517127 PMCID: PMC5026960 DOI: 10.1016/j.chemosphere.2016.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 05/21/2023]
Abstract
A survey of arsenic (As) concentrations and speciation was conducted on 10 species of seaweed from commercial harvesters and from collection at two sites in New England. Concentrations of As ranged from 4 to 106 mg/kg, mostly in the form of arsenosugars, with the distribution of arsenosugar analogs varying between taxa. In brown algae, As levels were correlated with phosphate concentrations, and arsenosugar speciation reflected differences in sulfur and phosphate concentrations between taxa. Several samples of the brown algae species Laminaria digitata contained significant levels of inorganic As (2.8-20 mg/kg), the most toxic form of As. A weak acid extraction with microwave heating was compared with a weaker methanol: water extraction method, and found to give slightly higher extraction efficiency with comparable relative concentrations of inorganic As, supporting the use of this faster and simpler extraction method for monitoring. Seaweed is a niche dietary item in the U.S. but its popularity is increasing; it is also used in agriculture and livestock farming which provide potential indirect routes for human exposure. The presence of occasional high concentrations of iAs, as well as the lack of toxicity studies on organic As species, suggest that monitoring of these high As foods is warranted.
Collapse
Affiliation(s)
- Vivien F Taylor
- Trace Element Analysis Core, HB 6105 Fairchild Hall, Dartmouth College, Hanover, NH 03755, United States.
| | - Brian P Jackson
- Trace Element Analysis Core, HB 6105 Fairchild Hall, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
17
|
Barciela-Alonso MC, Bermejo-Barrera P, Feldmann J, Raab A, Hansen HR, Bluemlein K, Wallschläger D, Stiboller M, Glabonjat RA, Raber G, Jensen KB, Francesconi KA. Arsenic and As Species. Metallomics 2016. [DOI: 10.1002/9783527694907.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- María Carmen Barciela-Alonso
- University of Santiago de Compostela; Department of analytical Chemistry; Nutrition and Bromatology. Avda. das Ciencias s/n 15782 Santiago de Compostela Spain
| | - Pilar Bermejo-Barrera
- University of Santiago de Compostela; Department of analytical Chemistry; Nutrition and Bromatology. Avda. das Ciencias s/n 15782 Santiago de Compostela Spain
| | - Jörg Feldmann
- University of Aberdeen; Department of Chemistry, TESLA (Trace Element Speciation Laboratory); Meston Walk AB24 3UE Aberdeen UK
| | - Andrea Raab
- University of Aberdeen; Department of Chemistry, TESLA (Trace Element Speciation Laboratory); Meston Walk AB24 3UE Aberdeen UK
| | - Helle R. Hansen
- Chemist Metal Section; Eurofins Miljo A/S, Ladelundvej 85 6600 Vejen Denmark
| | - Katharina Bluemlein
- Department of Analytical Chemistry, Fraunhofer Institute for Toxicology and Experimental; Medicine, Nikolai-Fuchs-Strasse 1 30625 Hannover Germany
| | - Dirk Wallschläger
- Trent University; Water Quality Centre, 1600 West Bank Drive Peterborough, ON K9L 0G2 Canada
| | - Michael Stiboller
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Ronald A. Glabonjat
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Georg Raber
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Kenneth B. Jensen
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Kevin A. Francesconi
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| |
Collapse
|
18
|
Llorente-Mirandes T, Llorens-Muñoz M, Funes-Collado V, Sahuquillo À, López-Sánchez JF. Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chem 2015; 194:849-56. [PMID: 26471627 DOI: 10.1016/j.foodchem.2015.08.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022]
Abstract
The present study reports arsenic analysis in Lentinula edodes, Agaricus bisporus and Pleurotus ostreatus before and after being cooked. Furthermore, arsenic in raw and cooked mushroom was determined in the gastric and gastrointestinal bioaccessible fractions obtained after simulating human digestion by means of an in vitro physiologically based extraction test (PBET). Several certified reference materials (SRM 1568a, SRM 1570a, CRM 7503-a, BC211 and IPE-120) were analysed to evaluate the proposed methods. Total arsenic content was 1393, 181 and 335μgAskg(-1) for L. edodes, A. bisporus and P. ostreatus, respectively, and decreased by between 53% and 71% in boiled mushroom and less than 11% in griddled mushroom. High bioaccessibility was observed in raw, boiled and griddled mushroom, ranging from 74% to 89% and from 80% to 100% for gastric and gastrointestinal extracts, respectively, suggesting the need to consider the potential health risk of consumption of the mushrooms analysed.
Collapse
Affiliation(s)
- Toni Llorente-Mirandes
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Mariona Llorens-Muñoz
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Virginia Funes-Collado
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Àngels Sahuquillo
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - José Fermín López-Sánchez
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain.
| |
Collapse
|
19
|
Ling MP, Wu CH, Chen SC, Chen WY, Chio CP, Cheng YH, Liao CM. Probabilistic framework for assessing the arsenic exposure risk from cooked fish consumption. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:1115-1128. [PMID: 24804830 DOI: 10.1007/s10653-014-9621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Geogenic arsenic (As) contamination of groundwater is a major ecological and human health problem in southwestern and northeastern coastal areas of Taiwan. Here, we present a probabilistic framework for assessing the human health risks from consuming raw and cooked fish that were cultured in groundwater As-contaminated ponds in Taiwan by linking a physiologically based pharmacokinetics model and a Weibull dose-response model. Results indicate that As levels in baked, fried, and grilled fish were higher than those of raw fish. Frying resulted in the greatest increase in As concentration, followed by grilling, with baking affecting the As concentration the least. Simulation results show that, following consumption of baked As-contaminated fish, the health risk to humans is <10(-6) excess bladder cancer risk level for lifetime exposure; as the incidence ratios of liver and lung cancers are generally acceptable at risk ranging from 10(-6) to 10(-4), the consumption of baked As-contaminated fish is unlikely to pose a significant risk to human health. However, contaminated fish cooked by frying resulted in significant health risks, showing the highest cumulative incidence ratios of liver cancer. We also show that males have higher cumulative incidence ratio of liver cancer than females. We found that although cooking resulted in an increase for As levels in As-contaminated fish, the risk to human health of consuming baked fish is nevertheless acceptable. We suggest the adoption of baking as a cooking method and warn against frying As-contaminated fish. We conclude that the concentration of contaminants after cooking should be taken into consideration when assessing the risk to human health.
Collapse
Affiliation(s)
- Min-Pei Ling
- Department of Health Risk Management, China Medical University, Taichung, 40402, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
20
|
Hwang ES, Ki KN, Chung HY. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver. Prev Nutr Food Sci 2014; 18:139-44. [PMID: 24471123 PMCID: PMC3892503 DOI: 10.3746/pnf.2013.18.2.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023] Open
Abstract
Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Department of Nutrition and Culinary Science, Hankyong National University, Gyeonggi 456-749, Korea ; Korean Foods Global Center, Hankyong National University, Gyeonggi 456-749, Korea
| | - Kyung-Nam Ki
- Korean Foods Global Center, Hankyong National University, Gyeonggi 456-749, Korea ; Department of Food and Biotechnology, Hankyong National University, Gyeonggi 456-749, Korea
| | - Ha-Yull Chung
- Korean Foods Global Center, Hankyong National University, Gyeonggi 456-749, Korea ; Department of Food and Biotechnology, Hankyong National University, Gyeonggi 456-749, Korea
| |
Collapse
|