1
|
Pineda-Vásquez T, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. From E-Waste to High-Value Materials: Sustainable Synthesis of Metal, Metal Oxide, and MOF Nanoparticles from Waste Printed Circuit Boards. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:69. [PMID: 38202524 PMCID: PMC10780742 DOI: 10.3390/nano14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The exponential growth of electronic waste (e-waste) has raised significant environmental concerns, with projections indicating a surge to 74.7 million metric tons of e-waste generated by 2030. Waste printed circuit boards (WPCBs), constituting approximately 10% of all e-waste, are particularly intriguing due to their high content of valuable metals and rare earth elements. However, the presence of hazardous elements necessitates sustainable recycling strategies. This review explores innovative approaches to sustainable metal nanoparticle synthesis from WPCBs. Efficient metal recovery from WPCBs begins with disassembly and the utilization of advanced equipment for optimal separation. Various pretreatment techniques, including selective leaching and magnetic separation, enhance metal recovery efficiency. Green recovery systems such as biohydrometallurgy offer eco-friendly alternatives, with high selectivity. Converting metal ions into nanoparticles involves concentration and transformation methods like chemical precipitation, electrowinning, and dialysis. These methods are vital for transforming recovered metal ions into valuable nanoparticles, promoting sustainable resource utilization and eco-friendly e-waste recycling. Sustainable green synthesis methods utilizing natural sources, including microorganisms and plants, are discussed, with a focus on their applications in producing well-defined nanoparticles. Nanoparticles derived from WPCBs find valuable applications in drug delivery, microelectronics, antimicrobial materials, environmental remediation, diagnostics, catalysis, agriculture, etc. They contribute to eco-friendly wastewater treatment, photocatalysis, protective coatings, and biomedicine. The important implications of this review lie in its identification of sustainable metal nanoparticle synthesis from WPCBs as a pivotal solution to e-waste environmental concerns, paving the way for eco-friendly recycling practices and the supply of valuable materials for diverse industrial applications.
Collapse
Affiliation(s)
- Tatiana Pineda-Vásquez
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia;
| | - Leidy Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
2
|
Li C, Xia H, Liu C, Zeng K, Zhang L. Analysis of the effect of heating rate on pyrolysis kinetics and product composition of copper-containing waste circuit boards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33075-33089. [PMID: 36471150 DOI: 10.1007/s11356-022-24524-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pyrolysis is a cost-effective and environmentally benign method for recycling organic waste, which can be converted into high-energy gases and oils. Pyrolysis technology was employed in this study to recycle copper-containing discarded circuit board material and recover copper, glass fibers, and gases and oils with high calorific values. Thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GC-MS) were used to evaluate pyrolyses of copper-containing waste circuit board materials conducted at different heating rates (5, 10, 20, and 40 °C/min), and the resulting volatiles were studied in detail. The effects of heating rate on the kinetics and activation energies for pyrolyses of copper-containing waste circuit boards were also investigated by using the Coats-Redfern (C-R) method. The TGA curves and FTIR spectra did not differ significantly for different heating rates, and the main functional groups identified with the FTIR results were O-H, C = C, aromatic benzene, substituted benzene, and C-Br. Additionally, GC-MS analyses showed that the heating rate had a great influence on the pyrolysis products formed; the phenol content decreased with increasing heating rate, and the highest content was realized at 5 ℃/min. Energy dispersive spectroscopy (EDS) analyses showed that bromine was removed from the solid phase products during pyrolysis, while copper was effectively enriched in the feedstock. This indicated that pyrolysis can be used to recover copper-containing waste circuit boards.
Collapse
Affiliation(s)
- Chunyu Li
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, 650093, Yunnan, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Hongying Xia
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
- Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, 650093, Yunnan, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
| | - Chengfei Liu
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Yunnan Copper Co., Ltd, Kunming, 650000, China
| | - Kangqing Zeng
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, 650093, Yunnan, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
- Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, 650093, Yunnan, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| |
Collapse
|
3
|
Sivashankar R, Sivasubramanian V, Anand Kishore K, Sathya AB, Thirunavukkarasu A, Nithya R, Deepanraj B. Metanil Yellow dye adsorption using green and chemical mediated synthesized manganese ferrite: An insight into equilibrium, kinetics and thermodynamics. CHEMOSPHERE 2022; 307:136218. [PMID: 36041520 DOI: 10.1016/j.chemosphere.2022.136218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Green Manganese Ferrite (GMF) and Chemical mediated Manganese Ferrite (CMF) were designed and prepared via in situ co-precipitation method and their adsorption potential was compared using the model dye, Metanil Yellow (MY). Previously, an extract of aquatic macrophyte and metal chloride were employed for the development of ecofriendly GMF. Alternatively, CMF has been synthesized through chemical co-precipitation from metal chloride precursors. Several characterization methods, including PSA, BET, TGA, DSC, FTIR, SEM, VSM, EDX, and XRD, were analyzed to reveal the structural and functional properties of the as-synthesized GMF and CMF. Their MY adsorption performances were tested as the function of the operational conditions such as initial solution pH, temperature, nanocomposite dosage, and dye concentration in a batch mode of operation. The pseudo-second order MY adsorption process fits best in Langmuir model which yielded the maximal monolayer adsorption capacity (qmax) of 391.34 mg/g for GMF and 271.89 mg/g for CMF. This outperformance of GMF over CMF was observed due to the augmentation of specified surface functional moieties derived from the phyto-constituents of macrophages. Further, the thermodynamic studies confirmed the chemisorptive and exothermic nature of adsorption processes. Conclusively, with the ease of regeneration and reuse potential, GMF and CMF could be viable contenders for scale up and industrial applications.
Collapse
Affiliation(s)
- Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India.
| | | | - Kola Anand Kishore
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | | | | | - Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India
| | | |
Collapse
|
4
|
Rangabhashiyam S, Lins PVDS, Oliveira LMTDM, Sepulveda P, Ighalo JO, Rajapaksha AU, Meili L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118581. [PMID: 34861332 DOI: 10.1016/j.envpol.2021.118581] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The production of biochar from sewage sludge pyrolysis is a promising approach to transform the waste resultant from wastewater treatment plants (WWTPs) to a potential adsorbent. The current review provides an up-to-date review regarding important aspects of sewage sludge pyrolysis, highlighting the process that results major solid fraction (biochar), as high-value product. Further, the physio-chemical characteristics of sewage-sludge derived biochar such as the elemental composition, specific surface area, pore size and volume, the functional groups, surface morphology and heavy metal content are discussed. Recent progress on adsorption of metals, emerging pollutants, dyes, nutrients and oil are discussed and the results are examined. The sewage sludge-derived biochar is a promising material that can make significant contributions on pollutants removal from water by adsorption and additional benefit of the management of huge volume of sewage. Considering all these aspects, this field of research still needs more attention from the researchers in the direction of the technological features and sustainability aspects.
Collapse
Affiliation(s)
- S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | | | | | - Pamela Sepulveda
- Centro para el Desarrollo de Nanociencia y Nanotecnología CEDENNA, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Chile, Santiago, Chile
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Anushka Upamali Rajapaksha
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Lucas Meili
- Laboratory of Process, Technology Center, Federal University of Alagoas, Maceió-AL, Brazil.
| |
Collapse
|
5
|
|
6
|
Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: An insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Rahmanian O, Falsafin M, Dinari M. High surface area benzimidazole based porous covalent organic framework for removal of methylene blue from aqueous solutions. POLYM INT 2020. [DOI: 10.1002/pi.6007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Omid Rahmanian
- Department of Environmental Health, Faculty of HealthHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Molood Falsafin
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| | - Mohammad Dinari
- Department of ChemistryIsfahan University of Technology Isfahan Iran
| |
Collapse
|
8
|
Wang Z, Gao M, Li X, Ning J, Zhou Z, Li G. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110196. [DOI: 10.1016/j.msec.2019.110196] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
|
9
|
Rajarathinam N, Arunachalam T, Raja S, Selvasembian R. Fenalan Yellow G adsorption using surface-functionalized green nanoceria: An insight into mechanism and statistical modelling. ENVIRONMENTAL RESEARCH 2020; 181:108920. [PMID: 31776017 DOI: 10.1016/j.envres.2019.108920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
In the present study, green nanoceria (gNC) was synthesized and surface-functionalized (sf-gNC) with amine moieties through chemical means and used as an adsorbent for the removal of Fenalan Yellow G (FYG) from the aqueous solution. Prior to the adsorption process, the optical, structural and textural characteristics of the nanomaterial ensured the presence of highly crystalline and monodisperse nanoceria with the functionalized amine group on their surfaces. The effects of the independent variables of the FYG removal process including initial solution pH, adsorbent dose, initial adsorbate concentration and time were examined for the percent removal. The maximum removal of 93.62% was observed at the pH of 2.0 with the adsorbent dose of 0.1 g for 10 mg/L of FYG dye concentration in 210 min. The equilibrium studies revealed that the maximum adsorption capacity was 25.58 mg/g by monolayer Langmuir model at 303 K and the chemical kinetics results followed pseudo-second-order and chemisorptive Elovich model. The magnitude of the energy variables from the thermodynamic analysis exposed the feasibility and spontaneity of endothermic adsorption. Furthermore, the interactive effects of the screened process variables investigated and optimized through response surface methodology (RSM). Besides, the FYG adsorption behavior was well predicted using artificial neural network (ANN) model with good accuracy (Mean Squared Error < 0.5; Coefficient of determination > 0.99) using 3 input layers, 3 hidden layers and 1 output layer. The study proposed the intrinsic mechanism of adsorbent-adsorbate interactions as either of electrostatic interaction or through surface complexation. Moreover, the prepared amine-modified nanoceria was found to have a minimum of 75% regenerative potential for five adsorption-desorption cycles.
Collapse
|
10
|
Chen W, Lin Q, Cheng S, Wu M, Tian Y, Ni K, Bai Y, Ma H. Synthesis and adsorption properties of amphoteric adsorbent HAx/CMC-yAl. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Adithya G, Rangabhashiyam S, Sivasankari C. Lanthanum‑iron binary oxide nanoparticles: As cost-effective fluoride adsorbent and oxygen gas sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
A selective and sensitive detection of residual hazardous textile dyes in wastewaters using voltammetric sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Dehghani MH, Sarmadi M, Alipour MR, Sanaei D, Abdolmaleki H, Agarwal S, Gupta VK. Investigating the equilibrium and adsorption kinetics for the removal of Ni (II) ions from aqueous solutions using adsorbents prepared from the modified waste newspapers: A low-cost and available adsorbent. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|