1
|
Zhang XH, Li SY, Zheng JJ, Li MX, Wu HZ, Wen K, Tang K. A green extraction method based on aqueous two-phase system for trace-level enrichment of multi-residue pesticides in traditional Chinese medicine prior to HPLC-MS/MS quantitative analysis. J Chromatogr A 2024; 1738:465462. [PMID: 39488123 DOI: 10.1016/j.chroma.2024.465462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
At present, the matrix interference in traditional Chinese medicine (TCM) is still a great challenge for multi-residue pesticides analysis. Herein, an alcohol/salt aqueous two-phase system (ATPS) based on n-propanol and (NH4)2SO4 was developed by comparing the binodal curve phase diagrams and the extraction rates of pesticides. The specific extraction conditions, including the composition of the ATPS, temperature, pH, and extraction time were explored through single factor experiments, and subsequently optimized using orthogonal array design and response surface methodology. The optimal conditions for the (NH4)2SO4/n-propanol ATPS extraction were determined to be: extraction time of 30 min, (NH4)2SO4 concentration of 22 %, temperature of 62.07 °C, n-propanol concentration of 30.13 %, and pH value of 7.66. In addition, the HPLC-MS/MS quantitative analysis of 25 pesticides in TCMs (i.e., honeysuckle and lily) was accomplished with recovery rates ranging from 64.2 % to 117.1 %. Moreover, the greenness of this method was evaluated using an analytical greenness calculator, and compared with other extraction techniques. The results indicate that the developed method is simple, efficient, and environmentally friendly, capable of trace-level enriching and simultaneously detecting multi-residue pesticides in TCM.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, PR China; Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, 461000, PR China.
| | - Shi-Yu Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, PR China
| | - Jing-Jing Zheng
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, 461000, PR China
| | - Ming-Xuan Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, PR China
| | - Hua-Zhe Wu
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, 461000, PR China
| | - Kun Wen
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, 461000, PR China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, PR China.
| |
Collapse
|
2
|
Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aqueous two-phase systems (ATPS) based on ionic liquids (IL) and deep eutectic solvents (DES) are ecofriendly choices and can be used to selectively separate compounds of interest, such as bioactive compounds. Bioactive compounds are nutrients and nonnutrients of animal, plant, and microbial origin that benefit the human body in addition to their classic nutritional properties. They can also be used for technical purposes in food and as active components in the chemical and pharmaceutical industries. Because they are usually present in complex matrices and low concentrations, it is necessary to separate them in order to increase their availability and stability, and ATPS is a highlighted technique for this purpose. This review demonstrates the application of ATPS based on IL and DES as a tool for recovering nonprotein bioactive compounds, considering critical factors, results and the most recent advances in this field. In addition, the review emphasizes the perspectives for expanding the use of nonconventional ATPS in purification systems, which consider the use of molecular modelling to predict experimental conditions, the investigation of diverse compounds in phase-forming systems, the establishment of optimal operational parameters, and the verification of bioactivities after the purification process.
Collapse
|
3
|
Emonds-Alt G, Malherbe C, Kasemiire A, Avohou HT, Hubert P, Ziemons E, Monbaliu JCM, Eppe G. Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water. Talanta 2022; 249:123640. [PMID: 35716473 DOI: 10.1016/j.talanta.2022.123640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
Glyphosate, also known as N-(phosphonomethyl)glycine, is one of the most widely used herbicides in the world. However, the controversy surrounding the toxicity of glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), remains a serious public concern. Therefore, there is a clear need to develop a rapid, sensitive and automated alternative method for the quantification of glyphosate and AMPA. In this context, surface enhanced Raman spectroscopy (SERS) coupled with a microfluidic system for the determination of glyphosate in tap water was developed, optimized and validated. The design of the microfluidic configuration for this application was built constructed to integrate the synthesis of the SERS substrate through to the detection of the analyte. To optimize the microfluidic setup, a design of experiments approach was used to maximize the SERS signal of glyphosate. Subsequently, an approach based on the European guideline document SANTE/11312/2021 was used to validate the method in the range of 78-480 μg/L using the normalized band intensities. The limit of detection and quantification obtained for glyphosate were 40 and 78 μg/L, respectively. Recoveries were in the range 76-117%, while repeatability and intra-day reproducibility were ≤17%. Finally, the method was also tested for the determination of AMPA in tap water matrix and for the simultaneous detection of AMPA and glyphosate.
Collapse
Affiliation(s)
- Gauthier Emonds-Alt
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium; Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Alice Kasemiire
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Hermane T Avohou
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium.
| |
Collapse
|
4
|
Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV. Bioanalysis 2022; 14:205-216. [PMID: 35001648 DOI: 10.4155/bio-2021-0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Favipiravir is an antiviral drug that was recently approved for the management of COVID-19 infection. Aim: This work aimed to develop a new method, using sugaring-out induced homogeneous liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Materials & methods: The optimum extraction conditions were attained using 500 μl of tetrahydrofuran as an extractant and 1400 mg of fructose as a phase-separating agent. Results: The developed method was validated according to the US FDA bioanalytical guidelines and was found linear in the range of 25-80,000 ng/ml with a correlation coefficient of 0.999. Conclusion: These results showed that the developed method was simple, easy, valid and adequately sensitive for determination of favipiravir in plasma for bioequivalence studies.
Collapse
|
5
|
Liquid-liquid equilibrium data for the ternary system based on ionic liquid + organic solvents + water at 298 K and atmospheric pressure applied in antidepressant partitioning. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ferreira AVDTPF, Barbosa LV, de Souza SD, Ciuffi KJ, Vicente MA, Trujillano R, Korili SA, Gil A, de Faria EH. Titania-triethanolamine-kaolinite nanocomposites as adsorbents and photocatalysts of herbicides. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Hammad SF, Abdallah IA, Bedair A, Mansour FR. Homogeneous liquid-liquid extraction as an alternative sample preparation technique for biomedical analysis. J Sep Sci 2021; 45:185-209. [PMID: 34472701 DOI: 10.1002/jssc.202100452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Liquid-liquid extraction is a widely used technique of sample preparation in biomedical analysis. In spite of the high pre-concentration capacities of liquid-liquid extraction, it suffers from a number of limitations including time and effort consumption, large organic solvent utilization, and poor performance in highly polar analytes. Homogeneous liquid-liquid extraction is an alternative sample preparation technique that overcomes some drawbacks of conventional liquid-liquid extraction, and allows employing greener organic solvents in sample treatment. In homogeneous liquid-liquid extraction, a homogeneous phase is formed between the aqueous sample and the water-miscible extractant, followed by chemically or physically induced phase separation. To form the homogeneous phase, aqueous samples are mixed with water-miscible organic solvents, water-immiscible solvents/cosolvents, surfactants, or smart polymers. Then, phase separation is induced chemically (adding salt, sugar, or buffer) or physically (changing temperature or pH). This mode is rapid, sustainable, and cost-effective in comparison with other sample preparation techniques. Moreover, homogeneous liquid-liquid extraction is more suitable for the extraction of delicate macromolecules such as enzymes, hormones, and proteins and it is more compatible with liquid chromatography with tandem mass spectrometry, which is a vital technique in metabolomics and proteomics. In this review, the principle, types, applications, automation, and technical aspects of homogeneous liquid-liquid extraction are discussed.
Collapse
Affiliation(s)
- Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Determination of atrazine and main metabolites in natural waters based on a simple method of QuEChERS and liquid chromatography coupled to a diode-array detector. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Umsza-Guez MA, Silva-Beltrán NP, Machado BAS, Balderrama-Carmona AP. Herbicide determination in Brazilian propolis using high pressure liquid chromatography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:507-517. [PMID: 31569968 DOI: 10.1080/09603123.2019.1670335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Propolis is a widely used medicinal product sourced by bees from vegetation that may be frequently irrigated with herbicides. Exposure to herbicides can affect bees' health and the quality of commercial propolis. The objective of this study was to calculate the concentrations of glyphosate, aminomethylphosphonic acid (AMPA), picloram and atrazine in different types of propolis from Brazil using high-performance liquid chromatography (HPLC). Four types of propolis (brown, green, red, and yellow) were evaluated for a total of 19 samples. Of these types of propolis, 47% tested positive for the herbicides atrazine (5 to 17.4 µg/g) and AMPA (10.2 to 11.3 µg/g). No samples were reported to be positive for glyphosate; however, the presence of AMPA indicates its existence. The concentrations observed in this study are less than international maximum-residue-level standards.
Collapse
Affiliation(s)
- M A Umsza-Guez
- Departamento de Biotecnologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - N P Silva-Beltrán
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. Obregón, México
| | - B A S Machado
- National Service of Industrial Learning-SENAI, Health Institute of Technology (ITS CIMATEC), University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - A P Balderrama-Carmona
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa, México
| |
Collapse
|
10
|
Buarque FS, Soares CMF, de Souza RL, Pereira MM, Lima ÁS. Development of an ethanolic two-phase system (ETPS) based on polypropylene glycol 2000 + ethylene glycol + ethanol for separation of hydrophobic compounds. Chem Commun (Camb) 2021; 57:2156-2159. [PMID: 33523051 DOI: 10.1039/d0cc01542c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports, for the first time, an Ethanolic Two-Phase System (ETPS) based on polypropylene glycol 2000 (PPG 2000), mono-, di-, tri-ethylene glycol, and ethanol. An ionic liquid (IL) (1-butyl-3-methylpyridinium chloride) was used as an adjuvant. This ETPS shows promising results for the extraction of highly hydrophobic compounds. Bixin (model of hydrophobic compounds) migrates completely to the PPG 2000-rich phase, while ascorbic acid (hydrophilic compound) migrated to the opposite phase.
Collapse
Affiliation(s)
- Filipe Smith Buarque
- Tiradentes University, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE, Brazil.
| | - Cleide Mara Faria Soares
- Tiradentes University, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE, Brazil. and Institute of Technology and Research, Av. Murilo Dantas, 300, Prédio do ITP, CEP: 49032-490, Aracaju, SE, Brazil
| | - Ranyere Lucena de Souza
- Tiradentes University, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE, Brazil. and Institute of Technology and Research, Av. Murilo Dantas, 300, Prédio do ITP, CEP: 49032-490, Aracaju, SE, Brazil
| | - Matheus Mendonça Pereira
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Álvaro Silva Lima
- Tiradentes University, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE, Brazil. and Institute of Technology and Research, Av. Murilo Dantas, 300, Prédio do ITP, CEP: 49032-490, Aracaju, SE, Brazil
| |
Collapse
|
11
|
Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Anal Chim Acta 2021; 1143:225-249. [DOI: 10.1016/j.aca.2020.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
|
12
|
Assis RC, Mageste AB, de Lemos LR, Orlando RM, Rodrigues GD. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2020; 223:121697. [PMID: 33303149 DOI: 10.1016/j.talanta.2020.121697] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022]
Abstract
This review approaches how aqueous two-phase systems (ATPS), in their various compositions (e.g., polymer + salt, copolymer + salt, ionic liquid + salt, acetonitrile + salt), can be efficiently used for extraction, preconcentration, and clean-up of analytes in aqueous samples to determine the compounds classified as emerging contaminants (ECs). In the literature, there are some studies using ATPS applied to ECs, like pesticides, pharmaceuticals, illicit drugs, personal care products, alkaloids, and hormones, even when in trace concentrations. The ATPS is an alternative to the conventional liquid-liquid extraction technique. However, it is predominantly composed of water and do not generally use organic solvents and, therefore, is based on the principles of green chemistry. An ATPS approach has a unique advantage because it can extract neutral, anionic, cationic, polar, and nonpolar compounds, even when present simultaneously in the same sample. This review covers how this simple and low environmental impact technique has been employed for the analysis of different classes of emerging contaminants.
Collapse
Affiliation(s)
- Roberta C Assis
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Aparecida B Mageste
- Universidade Federal de Ouro Preto, DQUI/ICEB, Ouro Preto, MG, 35.450-000, Brazil
| | - Leandro R de Lemos
- Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, DEQUI, Diamantina, MG, 39.100-000, Brazil
| | - Ricardo M Orlando
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil
| | - Guilherme D Rodrigues
- Universidade Federal de Minas Gerais, DQ/ICEX, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|