1
|
Fan B, Wei J, Yang J, Yang L, Shuang S. Microextraction techniques with deep eutectic solvents for gas chromatographic analysis: a minireview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6460-6473. [PMID: 39235425 DOI: 10.1039/d4ay01167h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sample pretreatment is one of the key steps in sample analysis. The design and development of new materials promote advancements in sample pretreatment technology. Deep eutectic solvents (DESs) are a novel material that have been developed in recent years. They possess characteristics such as low toxicity, good thermal stability, simple preparation methods, and low cost. DESs have the potential to replace traditional organic extraction solvents. DESs are formed from a hydrogen bond donor (HBD) and acceptor (HBA). Changing the type of HBA and HBD or their ratio leads to variations in the structure and properties of the resulting DESs. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are the primary analytical techniques used in laboratories. This paper analyzes the selection relationship between DESs and analytes, as well as the steps of sample pretreatment, based on the characteristics of GC instruments, and utilizing DES extractants and extraction materials for sample pretreatment. This paper summarizes the progress of DES-based microextraction methods for GC. It introduces the different classifications of liquid and solid-phase microextraction and the application of DESs in them. The theoretical mechanism and extraction/separation mechanism of DESs are analyzed, and potential application of DESs in extraction/separation technology is discussed.
Collapse
Affiliation(s)
- Binyue Fan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jianan Wei
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - Junchao Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - ShaoMin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Nascimento MM, Dos Anjos JP, Nascimento ML, Assis Felix CS, da Rocha GO, de Andrade JB. Development of a green liquid-phase microextraction procedure using a customized device for the comprehensive determination of legacy and current pesticides in distinct types of wine samples. Talanta 2024; 266:124914. [PMID: 37524042 DOI: 10.1016/j.talanta.2023.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
In this work, we reported the development of a novel, simple, and green liquid-phase microextraction (LPME) procedure based on the use of a customized device for the determination of 47 multiclass pesticides in red, white, and rosè wine samples by GC-MS. The main parameters that affect the LPME were optimized using multivariate statistical techniques such as centroid-simplex mixture design and Doehlert design. The optimal conditions were: 70 μL of toluene as extractor solvent; concentration of NaCl (2.7%, m v-1); pH 4; and an extraction time of 30 min, under vortex-assisted agitation (at 500 rpm). After validation, it was possible to obtain LOQ values as low as 7.63 ng L-1 and extraction recoveries ranging from 81.7% to 119% for most of the target pesticides. The application of exploratory analysis, specifically Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), provided evidence indicating contamination in the different types of wine samples, primarily by systemic fungicides.
Collapse
Affiliation(s)
- Madson M Nascimento
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Jeancarlo P Dos Anjos
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Melise L Nascimento
- Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Caio Silva Assis Felix
- Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Gisele O da Rocha
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus de Ondina, 40170-115, Salvador, BA, Brazil
| | - Jailson B de Andrade
- Centro Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845 - Piatã, 41650-010, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia Em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
3
|
Hu C, Feng J, Cao Y, Chen L, Li Y. Deep eutectic solvents in sample preparation and determination methods of pesticides: Recent advances and future prospects. Talanta 2024; 266:125092. [PMID: 37633040 DOI: 10.1016/j.talanta.2023.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
This review summarizes recent advances of deep eutectic solvents (DESs) in sample preparation and determination methods of pesticides in food, environmental, and biological matrices since 2019. Emphasis is placed on new DES categories and emerging microextraction techniques. The former incorporate hydrophobic deep eutectic solvents, magnetic deep eutectic solvents, and responsive switchable deep eutectic solvents, while the latter mainly include dispersive liquid-liquid microextraction, liquid-liquid microextraction based on in-situ formation/decomposition of DESs, single drop microextraction, hollow fiber-liquid phase microextraction, and solid-phase microextraction. The principles, applications, advantages, and limitations of these microextraction techniques are presented. Besides, the use of DESs in chromatographic separation, electrochemical biosensors, fluorescent sensors, and surface-enhanced Raman spectroscopy are discussed. This review is expected to provide a valuable reference for extracting and detecting pesticides or other hazardous contaminants in the future.
Collapse
Affiliation(s)
- Cong Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
4
|
Nascimento MM, Nascimento ML, Pereira Dos Anjos J, Cunha RL, da Rocha GO, Ferreira Dos Santos I, Pereira PADP, de Andrade JB. A green method for the determination of illicit drugs in wastewater and surface waters-based on a semi-automated liquid-liquid microextraction device. J Chromatogr A 2023; 1710:464230. [PMID: 37826922 DOI: 10.1016/j.chroma.2023.464230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 10/14/2023]
Abstract
Liquid-phase microextraction (LPME) is a simple, low-cost, and eco-friendly technique that enables the detection of trace concentrations of organic contaminants in water samples. In this work, a novel customized microextraction device was developed for the LPME extraction and preconcentration of nine illicit drugs in surface water and influent and effluent wastewater samples, followed by analysis by GC-MS without derivatization. The customized device was semi-automated by coupling it with a peristaltic pump to perform the collection of the upper layer of the organic phase. The extraction parameters affecting the LPME efficiency were optimized. The optimized conditions were: 100 µL of a toluene/DCM/EtAc mixture as extractor solvent; 30min of extraction time under vortex agitation (500rpm) and a solution pH of 11.6. The limits of detection and quantification ranged from 10.5ng L-1 (ethylone) to 22.0ng L-1 (methylone), and from 34.9ng L-1 to 73.3ng L-1 for these same compounds, respectively. The enrichment factors ranged from 39.7 (MDMA) to 117 (cocaethylene) and the relative recoveries ranged from 80.4% (N-ethylpentylone) to 120% (cocaine and cocaine-d3). The method was applied to real surface water, effluent, and influent wastewater samples collected in Salvador City, Bahia, Brazil. Cocaine was the main drug detected and quantified in wastewater samples, and its concentration ranged from 312ng L-1 to 1,847ng L-1. Finally, the AGREE metrics were applied to verify the greenness of the proposed method, and an overall score of 0.56 was achieved, which was considered environmentally friendly.
Collapse
Affiliation(s)
- Madson Moreira Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Melise Lemos Nascimento
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Jeancarlo Pereira Dos Anjos
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil
| | - Ricardo Leal Cunha
- Laboratório de Toxicologia Forense, Instituto de Análises e Pesquisas Forenses - IAPF, Polícia Científica, São Cristóvão, SE 49100-000, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil
| | - Gisele Olimpio da Rocha
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil
| | - Ivanice Ferreira Dos Santos
- Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n - Feira de Santana, Novo Horizonte - BA 44036-900, BA, Brazil
| | - Pedro Afonso de Paula Pereira
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil
| | - Jailson Bittencourt de Andrade
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil; Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador, BA 41650-010, Brazil.
| |
Collapse
|
5
|
Zhao J, Hou L, Zhao L, Liu L, Qi J, Wang L. An environment-friendly approach using deep eutectic solvent combined with liquid-liquid microextraction based on solidification of floating organic droplets for simultaneous determination of preservatives in beverages. RSC Adv 2023; 13:7185-7192. [PMID: 36875877 PMCID: PMC9982713 DOI: 10.1039/d2ra07145b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
With the increase in environmental protection awareness, the development of strategies to reduce the use of organic solvent used during the extraction process has attracted wide attention. A simple and green ultrasound-assisted deep eutectic solvent extraction combined with liquid-liquid microextraction based on solidification of floating organic droplets method was developed and validated for the simultaneous determination of five preservatives (methyl paraben, ethyl paraben, propyl paraben, isopropyl paraben, isobutyl paraben) in beverages. Extraction conditions including the volume of DES, value of pH, and concentration of salt were statistically optimized through response surface methodology using a Box-Behnken design. Complex Green Analytical Procedure Index (ComplexGAPI) was successfully used to estimate the greenness of the developed method and compare with the previous methods. As a result, the established method was linear, precise, and accurate over the range of 0.5-20 μg mL-1. Limits of detection and limits of quantification were in the range of 0.15-0.20 μg mL-1 and 0.40-0.45 μg mL-1, respectively. The recoveries of all five preservatives ranged from 85.96% to 110.25%, with relative standard deviation less than 6.88% (intra-day) and 4.93% (inter-day). The greenness of the present method is significantly better compared with the previous reported methods. Additionally, the proposed method was successfully applied to analysis of preservatives in beverages and is a potentially promising technique for drink matrices.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China .,Zhejiang Weikang Pharmaceutical Company 15 Xinggong North Road 324100 Jiangshan Zhejiang Province P.R. China.,School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Lingjun Hou
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Liqing Liu
- Zhejiang Weikang Pharmaceutical Company 15 Xinggong North Road 324100 Jiangshan Zhejiang Province P.R. China
| | - Jianhua Qi
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China
| | - Longhu Wang
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China
| |
Collapse
|
6
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Sportiello L, Favati F, Condelli N, Di Cairano M, Carmela Caruso M, Simonato B, Tolve R, Galgano F. Hydrophobic Deep Eutectic Solvents in the food sector: focus on their use for the extraction of bioactive compounds. Food Chem 2022; 405:134703. [DOI: 10.1016/j.foodchem.2022.134703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
8
|
Elik A, Sarac H, Durukan H, Demirbas A, Altunay N. Vortex assisted magnetic ionic liquid based dispersive liquid–liquid microextraction approach for determination of metribuzin in some plant samples with UV–Vis spectrophotometer. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Wang L, Wang Y, Chen M, Qin Y, Zhou Y. Hydrophobic deep eutectic solvent based dispersive liquid–liquid microextraction for the preconcentration and HPLC analysis of five rice paddy herbicides in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Boateng ID. A Critical Review of Emerging Hydrophobic Deep Eutectic Solvents' Applications in Food Chemistry: Trends and Opportunities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11860-11879. [PMID: 36099559 DOI: 10.1021/acs.jafc.2c05079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their low cost, biodegradability, and ease of preparation, deep eutectic solvents (DESs) are considered promising green alternatives to conventional solvents, as exploiting green solvents has been a research focus for achieving sustainable development goals. Most DESs in published studies are hydrophilic. On the other hand, the DES's hydrophilicity restricts its practical applicability to just polar molecules, which is a vital disadvantage to this extractant. Hydrophobic DES (HDES) has been developed as a new extractant adept at extracting nonpolar inorganic and organic compounds from aqueous systems. Although there has been little research on HDESs (HDES publications account for <10% of DES), specific intriguing applications have been discovered, requiring investigation and comparisons. As a result, this review covers the applications of emerging HDES in detecting pesticide residues, food additives, contaminants in food packaging, heavy metals, separation and extraction processes in food. According to the available literature, HDESs have the potential to overcome the limitations of hydrophilic DESs and be used in a broader range of applications in food with greater efficiency, which has received little attention. HDES is expected to substitute a lot of harmful organic extractants used for analytical reasons (food chemistry) in the future. Besides, the limitations of HDES were reviewed, and future studies were provided. This will serve as a reference for green chemistry advocates and practitioners in food science who want to minimize pollution and improve efficiency and benefit from the further development of HDESs.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Wu B, Niu Y, Bi X, Wang X, Jia L, Jing X. Rapid analysis of triazine herbicides in fruit juices using evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets and HPLC-DAD. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1329-1334. [PMID: 35285844 DOI: 10.1039/d1ay02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid and convenient analytical procedure (evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets) is advanced for determining the concentrations of triazine herbicide residues (e.g. simazine and atrazine) in fruit juices via HPLC-DAD. The technique involves adding 1-dodecanol (low density) and dichloromethane (high density) to the test solution to act as the extraction and volatile solvents, respectively. Calcium oxide is added to generate heat to accelerate the evaporation of dichloromethane, whereupon the 1-dodecanol quickly disperses into small droplets to complete the microextraction process. Thus, there is no need to use a dispersive solvent and heating equipment is also not required. The floating 1-dodecanol is subsequently frozen using an ice bath to facilitate its separation from the sample. Under optimal conditions (250 μL of 1-dodecanol (extraction solvent), 150 μL of CH2Cl2 (volatile solvent), 1250 mg of CaO, and an extraction time of 60 s) the detection procedure is linear over the range 0.05-5 μg mL-1 (with R > 0.99). The limits of detection (LOD) and quantification (LOQ) were determined to be 0.0022-0.0034 μg mL-1 and 0.0073-0.0113 μg mL-1, respectively. The recovery of simazine and atrazine in three fruit juices ranged between 78.5% and 96.4% with a relative standard deviation <8.2%. Therefore, the proposed approach can be effectively adopted to analyze the triazine herbicide content in fruit juices. The method has been proved to be simple, reliable, and remarkably efficient.
Collapse
Affiliation(s)
- Beiqi Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yu Niu
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xinyuan Bi
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
12
|
Lin Z, Zhang Y, Zhao Q, Chen A, Jiao B. Ultrasound-assisted dispersive liquid-phase microextraction by solidifying L-menthol-decanoic acid hydrophobic deep eutectic solvents for detection of five fungicides in fruit juices and tea drinks. J Sep Sci 2021; 44:3870-3882. [PMID: 34418890 DOI: 10.1002/jssc.202100590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
An ecofriendly and efficient ultrasound-assisted deep eutectic solvents dispersive liquid-phase microextraction by solidifying the deep eutectic solvents-rich phase was developed to determine azoxystrobin, fludioxonil, epoxiconazole, cyprodinil, and prochloraz in fruit juices and tea drinks by high-performance liquid chromatography. A varieties of environmental hydrophobic deep eutectic solvents serving as extraction agents were prepared using L-menthol and decanoic acid as hydrogen-bond acceptor and hydrogen-bond donor, respectively. The deep eutectic solvents were ultrasonically dispersed in sample solutions, solidified in a freezer and easily harvested. The main variables were optimized by one-factor-at-a-time and response surface test. The new method performs well with relative recovery of 71.75-109.40%, linear range of 2.5-5000 μg/L (r ≥ 0.9968), detection limit of 0.75-8.45 μg/L, quantification limit of 2.5-25 μg/L,, and inter- and intraday relative standard deviations below 13.53 and 14.84%, respectively. As for the extraction mechanism, deep eutectic solvents were disposed into many fine particles in the solution and captured the analytes based on the changes of particle size and quantity in deep eutectic solvents droplets after extraction. The environmental method can successfully detect fungicide residues in real fruit juices and tea drinks.
Collapse
Affiliation(s)
- Zhihao Lin
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Aihua Chen
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| | - Bining Jiao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China.,Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing, P. R. China
| |
Collapse
|
13
|
Pradanas-González F, Álvarez-Rivera G, Benito-Peña E, Navarro-Villoslada F, Cifuentes A, Herrero M, Moreno-Bondi MC. Mycotoxin extraction from edible insects with natural deep eutectic solvents: a green alternative to conventional methods. J Chromatogr A 2021; 1648:462180. [PMID: 33992990 DOI: 10.1016/j.chroma.2021.462180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Edible insects are widely consumed in Africa, Asia, Oceania and Latin America, but less commonly so in Western countries. Since the turn of the millennium, however, entomophagy has aroused growing interest worldwide in response to the increasing scarcity of food resources. In fact, edible insects can be a source of high-quality protein, and also of fat, energy, minerals and vitamins. However, the lack of regulatory guidelines for microbiologically or chemically hazardous agents potentially present in these new foods (e.g., mycotoxins) may make their consumption unsafe. In this work, we developed an environmentally friendly analytical method using natural deep eutectic solvents (NADES or natural DES) in combination with ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of six mycotoxins of great concern owing to their toxic effects on humans and animals (namely, fumonisin B1, fumonisin B2, T-2 toxin, HT-2 toxin, ochratoxin A and mycophenolic acid) in insect-based food products. The target mycotoxins were co-extracted from cricket flour by using the optimum DES composition (namely, a mixture of choline chloride and urea, in a 1:2 mole ratio, containing 15% water which resulted in the highest extraction recoveries for all toxins). An experimental design method (Fractional Factorial Design (FFD) was used to examine the influence of the operational variables DES volume and water content, amount of sample, extraction time and extraction temperature on the extraction efficiency for each mycotoxin. Under optimum conditions, extraction recoveries were close to 100% except for fumonisin B2 (70%) and T-2 toxin (50%), with relative standard deviations (RSDs) below 13% in all cases. The proposed NADES-UHPLC-MS/MS method was validated in accordance with the European Commission 2002/657/EC and 2006/401/EC decisions, and used to determine the target compounds in cricket flour, silkworm pupae powder and black cricket powder.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
14
|
A comprehensive review on application of the syringe in liquid- and solid-phase microextraction methods. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Plastiras OE, Andreasidou E, Samanidou V. Microextraction Techniques with Deep Eutectic Solvents. Molecules 2020; 25:E6026. [PMID: 33352701 PMCID: PMC7767243 DOI: 10.3390/molecules25246026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
In this review, the ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry. The properties of DES will be discussed, pinpointing their exceptional performance and analytical parameters, justifying their current extensive scientific interest. Finally, a variety of applications for commonly used microextraction techniques will be reported.
Collapse
Affiliation(s)
| | | | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (O.-E.P.); (E.A.)
| |
Collapse
|
16
|
Hosseinzadeh M, Shirvani M, Ghaemi A, Esmaeeli B. Mass transfer study in eductor liquid–liquid extractor: Dimensional analysis and response surface methodology modeling. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mostafa Hosseinzadeh
- School of Chemical, Petroleum, and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| | - Mansour Shirvani
- School of Chemical, Petroleum, and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum, and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| | - Bahare Esmaeeli
- School of Chemical, Petroleum, and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|
17
|
Shishov A, Gorbunov A, Baranovskii E, Bulatov A. Microextraction of sulfonamides from chicken meat samples in three-component deep eutectic solvent. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Lu W, Liu S, Wu Z. Recent Application of Deep Eutectic Solvents as Green Solvent in Dispersive Liquid-Liquid Microextraction of Trace Level Chemical Contaminants in Food and Water. Crit Rev Anal Chem 2020; 52:504-518. [PMID: 32845172 DOI: 10.1080/10408347.2020.1808947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As growing concerns on green, cost-effective, and time-saving chemistry analysis methods, deep eutectic solvents (DESs) are considered to be promising green alternatives to conventional solvents in dispersive liquid-liquid microextraction (DLLME) of trace level chemical contaminants in food and water, due to their biodegradability, low cost, and simple preparation. In the past few years, numerous innovative researches have focused on preconcentration of trace level chemical contaminants using DESs as extractant. In this context, this review aims to summarize the updated state-of-the-art effort dedicated to preconcentration of trace level chemical contaminants in food and water sample using DESs as extractants in DLLME. Furthermore, the major impact factors affecting the preconcentration efficiency and process mechanisms are thoroughly analyzed and discussed. Finally, prospects and challenges in application of DESs as solvents in DLLME to enrich trace level chemical contaminants are extensively elucidated and critically reviewed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, China.,Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Zhilian Wu
- Ningbo Fengcheng Advanced Energy Materials Research Institute, Ningbo, China
| |
Collapse
|
19
|
Alternative Green Extraction Phases Applied to Microextraction Techniques for Organic Compound Determination. SEPARATIONS 2019. [DOI: 10.3390/separations6030035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of green extraction phases has gained much attention in different fields of study, including in sample preparation for the determination of organic compounds by chromatography techniques. Green extraction phases are considered as an alternative to conventional phases due to several advantages such as non-toxicity, biodegradability, low cost and ease of preparation. In addition, the use of greener extraction phases reinforces the environmentally-friendly features of microextraction techniques. Thus, this work presents a review about new materials that have been used in extraction phases applied to liquid and sorbent-based microextractions of organic compounds in different matrices.
Collapse
|