1
|
Chen Y, Wang H, Zhou J, Lin D, Zhang L, Xing Z, Zhang Q, Xia L. Sensitive SERS assay for L-cysteine based on functionalized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124487. [PMID: 38805989 DOI: 10.1016/j.saa.2024.124487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
L-cysteine, an indispensable amino acid present in natural proteins, plays pivotal roles in various biological processes. Consequently, precise and selective monitoring of its concentrations is imperative. Herein, we propose a Surface-enhanced Raman Scattering (SERS) sensor for detecting L-cysteine based on the anti-aggregation of 4-mercaptobenzoic acid (4-MBA) and histidine (His) functionalized silver nanoparticles (Ag NPs). The presence of Hg2+ ions can induce the aggregation of Ag NPs@His@4-MBA due to the unique nanostructures of Ag NPs@His@4-MBA, resulting in a robust SERS intensity of 4-MBA. However, in the presence of L-cysteine, the stronger affinity between L-cysteine and Hg2+ reduces the concentration of free Hg2+, causing the dispersion of the aggregated functionalized Ag NPs and the reduction of the SERS signal intensity of 4-MBA. The developed SERS platform demonstrates excellent performance with a low detection limit of 5 nM (S/N = 3) and linear detection capabilities within the range of 0.01-100 μM for L-cysteine. Additionally, the method was successfully employed for the determination of L-cysteine in spiked serum samples, yielding recoveries ranging from 95.0 % to 108.1 % with relative standard deviations of less than 3.3 %. This study not only presents a novel approach for fabricating highly sensitive and specific SERS biosensors for biomolecule detection but also offers a significant strategy for the development and construction of SERS substrates using anti-aggregation design.
Collapse
Affiliation(s)
- Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Dongxue Lin
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; Yingkou Institute of Technology, Yingkou 115014, China.
| |
Collapse
|
2
|
Kumar A, Kumar K, Kaur K, Arya K, Mehta SK, Singh S, Kataria R. Zn-MOF@rGO nanocomposite: a versatile tool for highly selective and sensitive detection of Pb 2+ and Cu 2+ ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6020-6029. [PMID: 39175357 DOI: 10.1039/d4ay00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In this work, a hybrid nanocomposite material (PUC2@rGO) was prepared by integrating our previously developed Zn-MOF (PUC2) with reduced graphene oxide (rGO) through the wet impregnation method. The characterization of PUC2@rGO was performed using various analytical techniques, including FTIR, PXRD, FE-SEM, HR-TEM, XPS, zeta potential, and time-resolved FL spectroscopy. Our investigation primarily focused on assessing the composite's capability to detect water pollutants. Notably, PUC2@rGO demonstrated remarkable selectivity and sensitivity towards Pb2+ and Cu2+ ions via fluorescence quenching, exhibiting low detection limits and high quenching constant values. Spectroscopic analysis revealed that electron transfer from PUC2@rGO (donor) to the metal ions (acceptor) resulted in the observed quenching effect induced by Pb2+ and Cu2+ ions. Time-resolved fluorescence studies of PUC2@rGO before and after adding Pb2+ and Cu2+ ions confirmed dynamic quenching, further affirming strong interactions between PUC2@rGO and the targeted metal ions. These findings highlight PUC2@rGO's potential for efficiently detecting heavy metal pollutants in water.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kuldeep Kumar
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kushal Arya
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Singh
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
3
|
Parshad M, Kumar D, Verma V. An Introductory Overview on Applications of Pyrazoles as Transition Metal Chemosensors. J Fluoresc 2024; 34:1955-1964. [PMID: 37740878 DOI: 10.1007/s10895-023-03402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/25/2023]
Abstract
Utility of pyrazoles and their derivatives in constructing ordered porous materials with physicochemical characteristics such as chemosensors has undoubtedly created much interest in developing newer frameworks. A variety of pyrazole based chemosensors are known for their remarkable photophysical, pH sensitivity, solvatochromic, ion detection, high quantum yields and nonlinear optical behavior. Many of the transition metals have shown beneficial biological effects in biological systems. There is always a need of continuous monitoring to maintain an adequate range of all and specifically for the toxic ones like mercury. Pyrazoline nanoparticle probes have been reported for sensing/detection of Hg2+ions. Pyridinyl pyrazoline and benzimidazolyl pyrazole derived sensors are more selective and sensitive towards Zn2+and Fe3+ ions respectively. Pyrazole derived metal organic frameworks (MOF's) have been reported for environmental monitoring and biological imaging. Keeping in view of the enormous synthetic and biological importance of pyrazoles, herein, we are presenting an overview on applications of pyrazoles in transition metal chemosensors.
Collapse
Affiliation(s)
- Mahavir Parshad
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Devinder Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
4
|
Bhattacharyya M, Hossain M. Picomolar level sensorial dual colorimetric gold nanoparticle sensor for Zn 2+ and Hg 2+ ions synthesized from bark extract of Lannea Grandis Coromandelica and its wide range applications in real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123682. [PMID: 38042120 DOI: 10.1016/j.saa.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
In this work a facile, rapid, reproducible and non-toxic approach has been demonstrated for synthesis of most stable AuNPs from bark extract of Lannea Grandis Coromandelica. UV-Visible spectroscopy, FTIR, TEM, SAED, EDX, XRD, DLS, Zeta Potential, FE-SEM, AFM and XPS techniques were employed for the characterization of synthesized LGC-AuNPs. The UV-Vis spectra of LGC-AuNPs gave SPR peak at 536 nm while the TEM analysis revealed LGC-AuNPs have 20.75 nm size with spherical in shape. DLS study showed the AuNPs have average diameter 50.18 nm. The synthesized AuNPs exhibited very high selectivity, rapid response in recognition towards Zn2+ and Hg2+ ions by changing its color within 20 sec. This proposed sensor can detect very low picomolar level of Zn2+ and Hg2+ ions (LOD value for Zn2+ and Hg2+ were found 1.36 pM and 24.60 pM respectively). Here we also studied effect of several factors such as variation of conc of gold, temperature, incubation time, pH, salt, solvent (polar protic and polar aprotic) to know in which condition AuNPs have high stability and sensitivity. The data revealed that synthesized AuNPs was stable up to two years at pH 6.5 at room temperature in water media and under this condition, it shows maximum sensitivity and reactivity. Moreover, here interference study was carried out to identify high selectivity of synthesized LGC-AuNPs probe in presence of different metal ions. The real sample analyses also revealed the great applicability of this probe. Therefore, this simple, rapid, low-cost, sensing activity appeared to hold great sensibleness for detection of heavy metal ions in real sample.
Collapse
|
5
|
Wang S, Wang Y, Ma J, Huang C, Chen L. Portable smartphone-assisted highly sensitive detection of mercury ions based on gold nanoparticle-modified NH 2-UiO-66 metal-organic framework. Anal Bioanal Chem 2024; 416:1001-1010. [PMID: 38097760 DOI: 10.1007/s00216-023-05090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
A novel portable smartphone-assisted colorimetric method was reported for the determination of Hg2+ with good analytical performance. A Zr(IV)-based metal-organic framework functionalized with amino groups (NH2-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg2+, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH2-UiO-66), accelerating the oxidization of zymolyte 3,3',5,5'-tetramethylbenzidine (TMB). In the meantime, the color of the reaction solution turned a vivid blue, and the red, green, and blue (RGB) values of the solution color changed accordingly. On account of this strategy, the quantitative detection of Hg2+ could be achieved. After the optimization of the experiment conditions, the average color intensity (Ic) resulting from RGB values was linear related to the concentration of Hg2+ from 10 to 100 nM, accompanied with a detection limit (LOD) down to 5.4 nM calculated by 3σ/S. The successful application of the designed method has been promoted to detect Hg2+ in some water samples, displaying a great potential in practical application. Furthermore, the use of a smartphone made our proposed method simple and accurate, and thus puts forward a possible way for in situ and real-time monitoring.
Collapse
Affiliation(s)
- Shasha Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yifei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Chaonan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
6
|
Karimian M, Dashtian K, Zare-Dorabei R, Norouzi S. Paper-based microfluidic system and chiroptical functionalized gold nano-oval for colorimetric detection of L-Tryptophan. Anal Chim Acta 2024; 1285:342022. [PMID: 38057059 DOI: 10.1016/j.aca.2023.342022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
"The development and deployment of a practical and portable technology for on-site chiral identification of enantiomers hold immense significance in the fields of medical and biological sciences. Among the essential amino acids, Tryptophan (Trp) plays a crucial role in human metabolism and serves as a diagnostic marker for various metabolic disorders. In this study, we introduce an innovative approach that combines an enantio-selective ZIF-8-His MOF-MIPs packed-bed centrifugal microfluidic system with an enantioselective colorimetric sensor probe. This system is further integrated with smartphone-based on-site data recording. The basis of this colorimetric sensor's operation lies in the controlled morphology and surface passivation of gold nano-ovals (Au-NOs) through DL-Alanine. To confirm the successful synthesis of the chiral recognition elements, we employed various characterization techniques, including FE-SEM, TEM, FTIR, CD, UV-Vis, zeta potential, DLS, and XRD. Our focus was on optimizing operational parameters for the effective separation and determination of L-chiral tryptophan on-site. The sensor exhibited two linear ranges for L-Trp detection: 0-5.42 and 5.42-80.47 mM, with a detection limit of 0.5 mM. The integrated system possesses advantages such as ease of availability, preparation, high stability, desirable selectivity even in the presence of similar biomolecules, and rapid detection capabilities. Furthermore, our method demonstrated successful enantioselective sensing of L-Trp in various biological samples, including human blood plasma, urine, milk, and bovine serum albumin (BSA), yielding promising results. The integrated microfluidic platform follows a "sample-in and answer-out" approach, making it highly applicable in healthcare, environmental monitoring, food safety analysis, and point-of-care testing. The chiral recognition pretreatment assay and self-contained, automated colorimetric detection on the microfluidic disc represent a promising avenue for cutting-edge research in these domains".
Collapse
Affiliation(s)
- Mahsa Karimian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Solmaz Norouzi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
7
|
Pandey S, Gupta SM, Sharma SK. Plasmonic nanoparticle's anti-aggregation application in sensor development for water and wastewater analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:874. [PMID: 37351696 DOI: 10.1007/s10661-023-11355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Colorimetric sensors have emerged as a powerful tool in the detection of water pollutants. Plasmonic nanoparticles use localized surface plasmon resonance (LSPR)-based colorimetric sensing. LSPR-based sensing can be accomplished through different strategies such as etching, growth, aggregation, and anti-aggregation. Based on these strategies, various sensors have been developed. This review focuses on the newly developed anti-aggregation-based strategy of plasmonic nanoparticles. Sensors based on this strategy have attracted increasing interest because of their exciting properties of high sensitivity, selectivity, and applicability. This review highlights LSPR-based anti-aggregation sensors, their classification, and role of plasmonic nanoparticles in these sensors for the detection of water pollutants. The anti-aggregation based sensing of major water pollutants such as heavy metal ions, anions, and small organic molecules has been summarized herein. This review also provides some personal insights into current challenges associated with anti-aggregation strategy of LSPR-based colorimetric sensors and proposes future research directions.
Collapse
Affiliation(s)
- Shailja Pandey
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Shipra Mital Gupta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Surendra Kumar Sharma
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| |
Collapse
|
8
|
Arya K, Kumar A, Mehra S, Divya, Kumar A, Kumar Mehta S, Kataria R. Exploration and removal of multiple metal ions using mixed-linker-architected Zn-MOF in aqueous media. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Liu L, Ling Y, Han J, Hao T, Li X. Rapid and highly selective colorimetric detection of mercury(II) ions in water sources based on a ribavirin functionalized AuNP sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4669-4679. [PMID: 36345946 DOI: 10.1039/d2ay01437h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solvated mercuric ions (Hg2+), a toxic and harmful water pollutant, can easily accumulate in organisms and cause serious damage to the kidney, liver, and central nervous system. To realize rapid and efficient detection of mercury (II) ions in water sources, a kind of new colorimetric sensor of gold nanoparticles (AuNPs) functionalized with ribavirin (Rib-AuNPs) was proposed and characterized by TEM, DLS, XRD, and UV-vis in this work. The color of the Rib-AuNP solution rapidly changed from wine-red to gray-blue with the addition of Hg2+ based on the aggregation mechanism. The limits of detection (LODs) are 0.20 μM by the naked eye and 3.64 nM by UV-vis spectroscopy with a fine linear relationship in the range of 0-0.25 μM (R2 = 0.9834) and 0.25-0.80 μM (R2 = 0.9893) of Hg2+, indicating that the detection system of Rib-AuNPs could be applied to analyze Hg2+ with excellent selectivity and anti-interference in real water samples.
Collapse
Affiliation(s)
- Lvcheng Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yuqi Ling
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Junshan Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Tingting Hao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Escandar GM, Olivieri AC. A Critical Review on the Development of Optical Sensors for the Determination of Heavy Metals in Water Samples. The Case of Mercury(II) Ion. ACS OMEGA 2022; 7:39574-39585. [PMID: 36385878 PMCID: PMC9648124 DOI: 10.1021/acsomega.2c05215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Recent publications are reviewed concerning the development of sensors for the determination of mercury in drinking water, based on spectroscopic methodologies. A critical analysis is made of the specific details and figures of merit of the developed protocols. Special emphasis is directed to the validation and applicability to real samples in the usual concentration range of mercury, considering the maximum allowed limits in drinking water established by international regulations. It was found that while most publications describe in detail the synthesis, structure, and physicochemical properties of the sensing phases, they do not follow the state of the art in the analytical developments. Recommendations are provided regarding the proper method development and validation, including the setting of the calibration concentration range, the correct estimation of the limits of detection and quantitation, the concentration levels to be set for producing spiked water samples, the number of real samples for adequate validation, the comparison of the developed method with a reference technique, and other analytical features which should be followed.
Collapse
|
11
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
12
|
Sun Y, Yuan K, Mo X, Chen X, Deng Y, Liu C, Yuan Y, Nie J, Zhang Y. Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta 2022; 238:122999. [PMID: 34857332 DOI: 10.1016/j.talanta.2021.122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Collapse
Affiliation(s)
- Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Chang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| |
Collapse
|
13
|
Khani H, Abbasi S, Tavakkoli Yaraki M, Gholivand MB. Colorimetric detection and determination of glutathione based on superoxide radical-assisted etching approach. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Kirandeep, Kumar A, Sharma A, Sahoo SC, Zangrando E, Saini V, Kataria R, Kumar Mehta S. Metal organic framework as “turn-on” fluorescent sensor for Zr(IV) ions and selective adsorbent for organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Synthesis and characterization of triazole stabilized silver nanoparticles as colorimetric probe for mercury. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Fu LM, Hsu JH, Shih MK, Hsieh CW, Ju WJ, Chen YW, Lee BH, Hou CY. Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. MICROMACHINES 2021; 12:1123. [PMID: 34577766 PMCID: PMC8467733 DOI: 10.3390/mi12091123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
Silver nanoparticles (AgNPs) have stable reactivity and excellent optical absorption properties. They can be applied in various industries, such as environmental protection, biochemical engineering, and analyte monitoring. However, synthesizing AgNPs and determining their appropriate dosage as a coloring substance are difficult tasks. In this study, to optimize the process of AgNP synthesis and obtain a simple detection method for trace mercury in the environment, we evaluate several factors-including the reagent addition sequence, reaction temperature, reaction time, the pH of the solution, and reagent concentration-considering the color intensity and purity of AgNPs as the reaction optimization criteria. The optimal process for AgNP synthesis is as follows: Mix 10 mM of silver nitrate with trisodium citrate in a hot water bath for 10 min; then, add 10 mM of sodium borohydride to produce the AgNPs and keep stirring for 2 h; finally, adjust the pH to 12 to obtain the most stable products. For AgNP-based mercury detection, the calibration curve of mercury over the concentration range of 0.1-2 ppb exhibits good linearity (R2 > 0.99). This study provides a stable and excellent AgNP synthesis technique that can improve various applications involving AgNP-mediated reactions and has the potential to be developed as an alternative to using expensive detection equipment and to be applied for the detection of mercury in food.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (L.-M.F.); (W.-J.J.)
| | - Jia-Hong Hsu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Jhong Ju
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (L.-M.F.); (W.-J.J.)
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| |
Collapse
|
17
|
Dib M, Moutcine A, Ouchetto H, Chtaini A, Hafid A, Khouili M. New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Simple and Equipment-Free Paper-Based Device for Determination of Mercury in Contaminated Soil. Molecules 2021; 26:molecules26072004. [PMID: 33916065 PMCID: PMC8037038 DOI: 10.3390/molecules26072004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
This work presents a simple and innovative protocol employing a microfluidic paper-based analytical device (µPAD) for equipment-free determination of mercury. In this method, mercury (II) forms an ionic-association complex of tetraiodomercurate (II) ion (HgI42−(aq)) using a known excess amount of iodide. The residual iodide flows by capillary action into a second region of the paper where it is converted to iodine by pre-deposited iodate to liberate I2(g) under acidic condition. Iodine vapor diffuses across the spacer region of the µPAD to form a purple colored of tri-iodide starch complex in a detection zone located in a separate layer of the µPAD. The digital image of the complex is analyzed using ImageJ software. The method has a linear calibration range of 50–350 mg L−1 Hg with the detection limit of 20 mg L−1. The method was successfully applied to the determination of mercury in contaminated soil and water samples which the results agreed well with the ICP-MS method. Three soil samples were highly contaminated with mercury above the acceptable WHO limits (0.05 mg kg−1). To the best of our knowledge, this is the first colorimetric µPAD method that is applicable for soil samples including mercury contaminated soils from gold mining areas.
Collapse
|
19
|
Hassan AU, Sumrra SH, Zafar MN, Nazar MF, Mughal EU, Zafar MN, Iqbal M. New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Divers 2021; 26:51-72. [PMID: 33415545 DOI: 10.1007/s11030-020-10157-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
During the present investigation, two new sulfonamide-based Schiff base ligands, 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L1) and 4-{[1-(2-hydroxyphenyl)ethylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L2), have been synthesized and coordinated with the transition metals (V, Fe, Co, Ni, Cu and Zn). The ligands were characterized by their physical (color, melting point, yield and solubility), spectral (UV-Vis, FT-IR, LC-MS, 1H NMR and 13C NMR) and elemental data. The structures of the metal complexes (1)-(12) were evaluated through their physical (magnetic and conductance), spectral (UV-Vis, FT-IR and LC-MS) and elemental data. The molecular geometries of ligands and their selected metal complexes were optimized at their ground state energies by B3LYP level of density functional theory (DFT) utilizing 6-311+G (d, p) and LanL2DZ basis set. The first principle study has been discussed for the electronic properties, the molecular electrostatic possibilities as well as the quantum chemical identifiers. An obvious transition of intramolecular charge had been ascertained from the occupied to the unoccupied molecular orbitals. The UV-Vis analysis was performed through time-dependent density functional theory (TD-DFT) by CAM-B3LYP/6-311+G (d, p) function. The in vitro antimicrobial activity was studied against two fungal (Aspergillus niger and Aspergillus flavus) and four bacterial (Staphylococcus aureus, Klebsiela pneumoniae, Escherichia coli and Bacillus subtilis) species. The antioxidant activity was executed as antiradical DPPH scavenging activity (%), total iron reducing power (%) and total phenolic contents (mg GAE g-1). Additionally, enzyme inhibition activity was done against four enzymes (Protease, α-Amylase, Acetylcholinesterase and Butyrylcholinesterase). All the synthetic products exhibited significant bioactivity which were found to enhance upon chelation due to phenomenon of charge transfer from metal to ligand.
Collapse
Affiliation(s)
- Abrar Ul Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | | | | | - Muhammad Faizan Nazar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.,Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Multan Campus, Pakistan
| | | | | | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
20
|
Butmee P, Mala J, Damphathik C, Kunpatee K, Tumcharern G, Kerr M, Mehmeti E, Raber G, Kalcher K, Samphao A. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine-thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 2021; 221:121669. [PMID: 33076175 DOI: 10.1016/j.talanta.2020.121669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Mercury ion (Hg2+) is considered to be one of the most toxic heavy metal ions and can cause adverse effects on kidney function, the central nervous system, and the immune system. Therefore, it is important to develop a fast and simple method for sensitive and selective detection of Hg2+ in the environment. This research proposes a portable electrochemical sensor for rapid and selective detection of Hg2+. The sensor platform is designed based on thymine acetic acid anchored with cysteamine-conjugated core shell Fe3O4@Au nanoparticles (Fe3O4@Au/CA/T-COOH) immobilized on a sensing area of a screen-printed carbon electrode (SPCE) with the aid of an external magnetic field embedded in a homemade electrode holder for ease of handling. In the presence of Hg2+, the immobilized thymine combines specifically with Hg2+ and forms a thymine-Hg2+-thymine mismatch (T-Hg2+-T). The resulting amount of Hg2+ was determined by differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the sensor exhibited two wide linearities in a range from 1 to 200 μg L-1 and 200-2200 μg L-1 with the reliability coefficient of determination of 0.997 and 0.999, respectively. The detection limit (LOD) and the quantification limit (LOQ) were also determined to be 0.5 μg L-1 and 1.0 μg L-1, respectively. The sensor was further applied for determination of Hg2+ in water samples, a certified reference material and fish samples. The results were compared with flow injection atomic spectroscopy-inductively coupled plasma-optical emission spectroscopy (FIAS-ICP-OES) systems as a reference method. Results obtained with the proposed sensor were relatively satisfactory, and they showed no significant differences at a 95% confidence level by t-test from the standard method. Therefore, considering its fast and simple advantages, this novel strategy provides a potential platform for construction of a Hg2+ electrochemical sensor.
Collapse
Affiliation(s)
- Preeyanut Butmee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Jittra Mala
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Chulalak Damphathik
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanjana Kunpatee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Gamolwan Tumcharern
- National Nanotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.
| | - Margaret Kerr
- Department of Chemistry, Worcester State University, 486 Chandler Street, Worcester, MA, 01602, United States
| | - Eda Mehmeti
- Institute of Chemistry-Analytical Chemistry, University of Graz, A-8010, Graz, Austria
| | - Georg Raber
- Institute of Chemistry-Analytical Chemistry, University of Graz, A-8010, Graz, Austria
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, A-8010, Graz, Austria
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
21
|
Ingenious aspartic acid-functionalized gold nanoparticles by one-pot protocol for the sensitive detection of chromium (III) ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Colorimetric assay for determination of Cu (II) ions using l-cysteine functionalized silver nanoplates. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104705] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Balasurya S, Syed A, Thomas AM, Marraiki N, Al-Rashed S, Elgorban AM, Raju LL, Das A, Khan SS. Colorimetric detection of mercury ions from environmental water sample by using 3-(Trimethoxysilyl)propyl methacrylate functionalized Ag NPs-tryptophan nanoconjugate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111888. [DOI: 10.1016/j.jphotobiol.2020.111888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
|
25
|
Wang Q, Peng R, Wang Y, Zhu S, Yan X, Lei Y, Sun Y, He H, Luo L. Sequential colorimetric sensing of cupric and mercuric ions by regulating the etching process of triangular gold nanoplates. Mikrochim Acta 2020; 187:205. [PMID: 32152683 DOI: 10.1007/s00604-020-4176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 μM for Cu2+ and 0.02-3.0 μM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Ruifeng Peng
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yishan Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Shouzhe Zhu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Youbao Sun
- Shimadzu (China) Co., Ltd., Shanghai, 200052, People's Republic of China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
26
|
Singh G, Sindhu J, Manisha, Kumar V, Sharma V, Sharma SK, Mehta SK, Mahnashi MH, Umar A, Kataria R. Development of an off-on selective fluorescent sensor for the detection of Fe3+ ions based on Schiff base and its Hirshfeld surface and DFT studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|