1
|
Hashim NM, Mohd Husani NI, Wardani NI, Alahmad W, Shishov A, Madurani KA, Liao PC, Yahaya N, Mohamad Zain NN. Advancements in effervescent-assisted dispersive micro-solid phase extraction for the analysis of emerging pollutants. Anal Chim Acta 2024; 1325:342891. [PMID: 39244296 DOI: 10.1016/j.aca.2024.342891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Emerging pollutants pose an increasing threat to the environment and human well-being, requiring substantial progress in analytical methodologies. Dispersive micro-solid phase extraction (μ-dSPE) has proven successful in detecting and measuring these contaminants, particularly in trace quantities. However, challenges persist in achieving a uniform sorbent distribution and efficient separation from the sample matrix. To address these issues, effervescent-assisted dispersive micro-solid phase extraction (EA-μ-dSPE) was developed. This method uses on-site produced carbon dioxide as a dispersing agent, eliminating the need for vortexing or ultrasonication. Due to the sorbent dispersion in the sample solution, the contact surface between the analyte and the sorbent increases, resulting in increased extraction efficiency, reduced extraction time, and promotes of sustainability. Several parameters are critical to the successful execution of this procedure to extract the analytes, including the type and structure of sorbent, composition of dispersing agents, sorbent separation procedure, and type and properties of desorption solvents. The sorbent plays a critical role in successful extraction of emerging pollutants. It is clear that for the extraction of the analyte on the sorbent, proper interaction must be established between the analyte and the sorbent via physical and chemical interactions. This review thoroughly evaluates the underlying principles of the approach, its potential, and the significant advancements that have been documented. It explores the method's capacity to analyse and identify emerging pollutants, emphasising its potential across various sample matrices for enhanced pollutant identification and quantification.
Collapse
Affiliation(s)
- Nor Munira Hashim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nurina Izzah Mohd Husani
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Niluh Indria Wardani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Kartika A Madurani
- Laboratory of Instrumentation and Analytical Sciences, Chemistry Department, Faculty of Science and Data Analytics, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
El-Deen AK, Hussain CM. Advances in magnetic analytical extraction techniques for detecting antibiotic residues in edible samples. Food Chem 2024; 450:139381. [PMID: 38653048 DOI: 10.1016/j.foodchem.2024.139381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of antibiotics in agricultural and animal husbandry to treat bacterial illnesses has resulted in a rise in antibiotic-resistant bacteria. These bacteria can grow when antibiotic residues are present in food items, especially in edible animal products. As a result, it is crucial to monitor and regulate the amounts of antibiotics in food. Magnetic analytical extractions (MAEs) have emerged as a potential approach for extracting antibiotic residues from food using magnetic nanoparticles (MNPs). Recent improvements in MAEs have resulted in the emergence of novel MNPs with better selectivity and sensitivity for the extraction of antibiotic residues from food samples. Consequently, this review paper addresses current developments in MAE for extracting antibiotic residues from edible samples. It also provides a critical analysis of contemporary MAE practices. The current issues and potential future developments in this field are also discussed, thereby providing a framework for future study paths.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Simultaneously speciation of mercury in water, human blood and food samples based on pyrrolic and pyridinic nitrogen doped porous graphene nanostructure. Food Chem 2023; 403:134394. [DOI: 10.1016/j.foodchem.2022.134394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
4
|
Kiszkiel-Taudul I, Starczewska B, Wierzbowska M. Development of chromatographic techniques connected with corona and tandem mass spectrometry detection systems for determination of amoxicillin in bovine milk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Sadeghi M, Ezabadi A, Omidi B. Synthesis and characterization of two novel diethylamine-based dicationic Brönsted acidic ionic liquids and evaluation of their catalytic and antibacterial behavior. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Nguyen TT, Huynh TTT, Nguyen NH, Nguyen TH, Tran PH. Recent advances in the application of ionic liquid-modified silica gel in solid-phase extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lavrukhina OI, Amelin VG, Kish LK, Tretyakov AV, Pen’kov TD. Determination of Residual Amounts of Antibiotics in Environmental Samples and Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Saad Aldoori M, Merdivan M, Altınışık Tağaç A. Metal organic framework/clay composite for micro-dispersive solid-phase extraction of sulfonamides and penicillins in milk, and synthetic urine solution coupling with HPLC/DAD detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Rapid determination of multiclass antibiotics and their metabolites in milk using ionic liquid-modified magnetic chitosan nanoparticles followed by UPLC-MS/MS. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
11
|
A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
14
|
Lin Y, Cen S. Content determination of ampicillin by Ni(ii)-mediated UV-Vis spectrophotometry. RSC Adv 2022; 12:9786-9792. [PMID: 35424914 PMCID: PMC8961795 DOI: 10.1039/d2ra00116k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Ampicillin could be degraded under alkaline conditions, of which the degradation products formed a complex with Ni2+ in a ratio of 2 : 1 in ammonium hydroxide. According to the study, it was found that there was a characteristic absorption peak at the wavelength of 269 nm, and the molar absorption coefficient and the stability constant of the complex was 4.28 × 103 L mol−1 cm−1 and 5.95 × 109, respectively. The linear relationship between the concentration and absorbance was favorable at the range of 17.47–69.88 μg mL−1. The regression equation was calculated as A = 0.0124C + 0.0053. The R2 was 0.9990 and the detection limit was 0.52 μg mL−1. Thus, the Ni2+ complex-based ultraviolet spectrophotometry has been created as a new method for indirect determination of ampicillin, with recovery rates from 98.68 to 102.7%, and the relative standard deviation (RSD) is from 0.7% to 1.7%, when applied for determining the content of practical samples. Ampicillin could be degraded under alkaline conditions, of which the degradation products formed a complex with Ni2+ in a ratio of 2 : 1 in ammonium hydroxide.![]()
Collapse
Affiliation(s)
- Yu Lin
- Faculty of Pharmacy, Guangxi University of Chinese Medicine Nanning 530001 People's Republic of China
| | - Siyuan Cen
- Faculty of International Education, Guangxi University of Chinese Medicine Nanning 530001 People's Republic of China
| |
Collapse
|
15
|
Synthesis and characterization of a novel Brönsted acidic dicationic ionic liquid based on piperazine and its application in the one-pot synthesis of various xanthenes under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Aptamer labeled nanozyme-based ELISA for ampicillin residue detection in milk. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Nazari S, Zabihzadeh M, Shirini F, Tajik H. A Dicationic Molten Salt Catalyzed Synthesis of 1,2,4-Triazolopyrimidine, Quinazolinone and Biscoumarin Derivatives under Green Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shadi Nazari
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Mehdi Zabihzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
18
|
Gu YX, Yan TC, Yue ZX, Li MH, Zheng H, Wang SL, Cao J. Dispersive Micro-solid-Phase Extraction of Acaricides from Fruit Juice and Functional Food Using Cucurbituril as Sorbent. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
|
20
|
Synthesis of magnetic Cu/CuFe2O4@MIL-88A(Fe) nanocomposite and application to dispersive solid-phase extraction of chlorpyrifos and phosalone in water and food samples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
CHAI P, SONG Z, LIU W, XUE J, WANG S, LIU J, LI J. [Application of carbon dots in analysis and detection of antibiotics]. Se Pu 2021; 39:816-826. [PMID: 34212582 PMCID: PMC9404157 DOI: 10.3724/sp.j.1123.2021.04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Antibiotics have been overused in recent years because of their remarkable curative effect, but this has led to considerable environmental pollution. Therefore, the development of approaches aimed at the effective detection and control of the antibiotics is vital for protecting the environment and human health. Many conventional strategies (such as high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)) are currently in use for the detection of antibiotics. These strategies have aroused a great deal of interest because of their outstanding features of high efficiency and speed, good reproducibility, automation, etc. However, various problems such as tedious sample pretreatment, low detection sensitivity, and high cost must be overcome for the effective detection of antibiotics in environmental samples. Consequently, it is of great significance to improve the detection sensitivity of antibiotics. The development of new materials combined with the existing detection technology has great potential to improve the detection results for antibiotics. Carbon dots (CDs) are a new class of nanomaterials with particle sizes in the range of 0-10 nm. In addition, CDs have desirable properties such as small particle effect, excellent electrical properties, unique optical properties, and good biocompatibility. Hence, they have been widely utilized for the detection of antibiotics in environmental samples. In this review, the application of CDs combined with sensors and chromatographic technology for the detection of antibiotics in the last five years are summarized. The development prospects of CD-based materials and their application to the analysis and detection of antibiotics are presented. In this review, many new sensors (CDs combined with molecularly imprinted polymer sensors, aptamer sensors, electrochemiluminescence sensors, fluorescence sensors, and electrochemical sensors) combined with CD-based materials and their use in the detection of antibiotics are summarized. Furthermore, advanced analysis methods such as ratiometric sensor and array sensor methods are reviewed. The novel analysis methods provide a new direction toward the detection of antibiotics by CDs combined with a sensor. Moreover, CD-based chromatographic stationary phases for the separation of antibiotics are also summarized in this manuscript. It is reported that the detection sensitivity for antibiotics can be greatly improved by the combination of CDs and a sensor. Nevertheless, a literature survey reveals that the detection of antibiotics in complex environmental samples is confronted with numerous challenges, including the fabrication of highly sensitive sensors in combination with CDs. Furthermore, the development of novel high-performance materials is of imperative. In addition, it is important to develop new methods for effective data processing. The separation of antibiotics with CDs as the chromatographic stationary phases is in the preliminary stage, and the separation mechanism remains to be clarified. In conclusion, there are still many problems to be overcome when using CDs as novel materials for the detection of antibiotics in environmental samples. Nowadays, CD-based materials are being intensively studied, and various analytical detection technologies are being rapidly developed. In the future, CD-based materials are expected to play an important role in the detection of antibiotics and other environmental pollutants.
Collapse
|
22
|
Sahebi H, Zandavar H, Pourmortazavi SM, Mirsadeghi S. Construction of Fe 3O 4/SiO 2/chitosan-grafted-poly(N-vinylcaprolactam) magnetic nanocomposite and their application in simultaneous extraction of Trans-resveratrol and its metabolites from rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122841. [PMID: 34225242 DOI: 10.1016/j.jchromb.2021.122841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
A novel magnetic nanocomposite of chitosan-grafted-poly(N-vinylcaprolactam) (Fe3O4/SiO2/CHT-g-PNVCL MNC) were synthesized. Chitosan was prepared from shrimp shells Penaeus monodon by a green deacetylation approach. N-vinylcaprolactam was first polymerized on the surface of Fe3O4 magnetic nanoparticles using surface-initiated atom transfer radical polymerization. Then, the Fe3O4 nanoparticles modified with carboxyl-terminated- poly(N-vinylcaprolactam) was grafted onto chitosan. Various techniques were used to characterize of physicochemical properties of synthesized nanomaterials. The application of Fe3O4/SiO2/CHT-g-PNVCL MNC was utilized as a novel adsorbent for the simultaneous extraction of trans-resveratrol and its major phase II metabolites from rat plasma. A qualitative analysis was performed using ultra-performance liquid chromatography triple-quadrupole tandem mass spectrometry. Response surface methodology based on central composite design was used to optimize the extraction procedure including pH, amount of adsorbent, extraction time, desorption time, and volume of elution solvent. The established quantitative method succeeded in satisfying FDA requirements regarding biological analysis methods. The results of the validation of the method indicated its acceptable accuracy (-4.4 to 6.9%), linearity (r > 0.995), precision (CV < 6.3%), and stability. The lower limits of quantification of the proposed method achieved were 1.23-1.68 ngmL-1for target analytes. The information obtained from the method validation has been used to estimate the expanded uncertainty for the determination of trans-resveratrol in rat plasma samples following orally administered trans-resveratrol. The method was applied to study the pharmacokinetics, metabolism, and bioavailability of trans-resveratrol in healthy rats following a single oral or intravenous dose.
Collapse
Affiliation(s)
- Hamed Sahebi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Halal Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamed Zandavar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137 Tehran, Iran.
| |
Collapse
|
23
|
Zhao Q, Zhang G, Lu D, Feng K, Shi X. Ultra-sensitive detection of ampicillin via dual-enzyme mediated cascade-signal amplified aptasensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Wang Y, Liu L. [Research progress in application of immobilized ionic liquid materials to separation by solid-phase extraction]. Se Pu 2021; 39:241-259. [PMID: 34227306 PMCID: PMC9403816 DOI: 10.3724/sp.j.1123.2020.08002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids are low-temperature molten salts with almost no vapor pressure, and they are composed of organic cations and inorganic anions. Ionic liquids are characterized by the properties of good chemical stability, high solubility, designable structure, high conductivity and so on. The physicochemical properties of an ionic liquid depend on the nature and size of the cation and anion, which confer unique characteristics; hence, these reagents are also termed "designed extractants." As a new class of green solvents, ionic liquids are potential replacements to traditional volatile organic solvents used for extraction; for this reason, ionic liquids have attracted the attention of scientists. Research on the methods of preparation and applications of ionic liquids is being diversified, and they are extensively used in catalytic chemistry, photoelectron chemistry, materials chemistry, analytical chemistry, etc. By functional guiding design, the structures of ionic liquids, especially the imidazole ring cations, can be easily grafted with active groups such as hydroxyl, amino, carboxyl, and cyano groups, so that interactions between the ionic liquids and target molecules can be promoted via the formation of π-π bonds, hydrogen bonds, ionic bonds, and van der Waals forces. In addition, ionic liquids can be readily immobilized on solid carriers by physical or chemical means in order to obtain a new solid material with ionic liquids embedded internally or decorated on the surface. Furthermore, ionic liquids could be converted into ionic liquid-immobilized composite materials by impregnation, grafting, etc. The resulting composites not only suffer minimal loss of ionic liquids but also retain the typical characteristics of the ionic liquids and solid materials, thus showing improved mass transfer performance and better adsorption performance. Immobilized materials are characterized by high enrichment efficiency, high adsorption capacity, good stability, and strong extraction selectivity, as well as the presence of numerous recognition sites and high utilization rate of ionic liquids. In recent years, they have been widely used as solid-phase extraction adsorption materials for the separation of small organic molecules. This review introduces common immobilization methods and the characteristics of ionic liquid-immobilized materials, as well as their application in solid-phase extraction. In this paper, methods for the immobilization of ionic liquids with solid carriers such as silica gel, molecular sieves, molecularly imprinted polymers, graphene oxide, and magnetic nanomaterials are summarized, and the application of ionic liquid-immobilized materials in solid-phase extraction is reviewed. The target substances include alkaloids, flavonoids, polyphenols, and other natural active components as well as common drug molecules, organic pesticides, and other organic small molecular compounds. The properties, applications, and separation mechanisms of ionic liquids immobilized with various carriers are systematically introduced. Literature survey shows that the distribution of the binding active sites of ionic liquid-immobilized materials to the target molecules is more uniform, which increases the adsorption capacity of the materials. The adsorption efficiency of ionic liquid-immobilized materials is related to the type of ionic liquid, amount of adsorption material, concentration of the sample solution, adsorption temperature, solution pH, flow rate of the eluent, and type and amount of the eluting solvent. The existing disadvantages of ionic liquids, such as simple structures, insufficient basic theoretical research, and unsatisfactory extraction degree in complex matrixes would also be discussed. The corresponding solutions would be presented with the aim of providing guidance for the application of ionic liquid-immobilized materials in the separation and analysis of targets in complex matrices, thus paving the way for a new direction in the field of extraction and separation.
Collapse
Affiliation(s)
- Yicong Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| |
Collapse
|
25
|
A simple one-step transferred sample preparation for effective purification and extraction of auramine O in bean product by combining air-assisted ionic liquid-based dispersive liquid-liquid microextraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Shirani M, Akbari-Adergani B, Rashidi Nodeh H, Shahabuddin S. Ultrasonication-facilitated synthesis of functionalized graphene oxide for ultrasound-assisted magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G. Mikrochim Acta 2020; 187:634. [PMID: 33128630 DOI: 10.1007/s00604-020-04605-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
A simplistic approach is presented for the synthesis of ultrasonically fabricated graphene oxide functionalized with polyaniline and N-[3-(Trimethoxysilyl)propyl]ethylenediamine. The synthesized nanocomposite was then employed for the facile, green, ultrasound-assisted, magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G in milk samples and infant formula prior to high-performance liquid chromatography-ultraviolet determination. The designed nanocomposites were comprehensively characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. In order to achieve the best extraction efficiencies, the influential parameters including pH, amount of magnetic sorbent, type and volume of elution solvent, extraction time, sample volume, and desorption time were assessed. At the optimum conditions, linear ranges of 2.5-1000 (μg L-1) for ampicillin and penicillin G and a linear range of 2.5-750 (μg L-1) were obtained for amoxicillin at optimum conditions. Moreover, the limits of detection (S/N = 3) of 0.5, 0.8, and 0.9 (μg L-1) were obtained for amoxicillin, ampicillin, and penicillin G, respectively. The precision (relative standard deviations (%)) values of 3.1, 2.6, and 2.5 at the concentration of 50 μg L-1 for seven replicates were obtained for ampicillin, amoxicillin, and penicillin G, respectively. The efficiencies of ≤ 96% and relative standard deviations of less than 3.1% were also obtained thereby confirming the high potential of the synthesized nanocomposites for simultaneous preconcentration and separation of the β-lactam antibiotics in complex matrixes. Graphical Abstract.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, 7867161167, Iran.
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Islamic Republic of Iran
| | - Hamid Rashidi Nodeh
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute, Karaj, Iran
| | - Syed Shahabuddin
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Raisan Village, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
27
|
Wang Y, Liu Q, Wei J, Dai Z, Ding L, Yuan R, Wen Z, Wang K. Visible light-driven photoelectrochemical ampicillin aptasensor based on an artificial Z-scheme constructed from Ru(bpy) 32+-sensitized BiOI microspheres. Biosens Bioelectron 2020; 173:112771. [PMID: 33190051 DOI: 10.1016/j.bios.2020.112771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Dye sensitization is an alternative strategy to improve photoelectric activity of semiconductors and, particularly, to enhance the activity towards visible light domain. Herein, an artificial Z-scheme bipyridine ruthenium (Ru(bpy)32+) sensitizing narrow-gap bismuth oxy-iodide (BiOI) microspheres was constructed by a simple electrostatic interaction strategy for the first time. The electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) analysis showed that this design of such Z-scheme structure was helpful to enhance the interfacial charge transfer and improve the photoelectric conversion efficiency. In addition, due to the sensitization of Ru(bpy)32+, the band gap was narrowed from 1.8 eV of BiOI microspheres to 1.3 eV of BiOI/Ru(bpy)32+ microspheres, leading to improve the utilization of visible light. So that, the photocurrent of the resulted BiOI/Ru(bpy)32+ was 13.0 times that of pure BiOI microspheres. In view of the outstanding photoelectrochemical (PEC) performance of BiOI/Ru(bpy)32+ and the high specificity of the aptamer, the PEC aptasensor for ampicillin (AMP) merits the excellent detection performance including a broad linear ranging from 1 × 10-7 nM to 100 nM as well as a low detection limit of 3.3 × 10-8 nM (S/N = 3). This work not only provides a novel way to construct and design highly efficient photoactive materials for PEC detection, but also broadens the application of Z-scheme in the field of sensing.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Wei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhen Dai
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lijun Ding
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ruishuang Yuan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zuorui Wen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
28
|
Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04224-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|
30
|
Alipanahpour Dil E, Ghaedi M, Asfaram A, Mehrabi F, Shokrollahi A, Matin AA, Tayebi L. Magnetic dual-template molecularly imprinted polymer based on syringe-to-syringe magnetic solid-phase microextraction for selective enrichment of p-Coumaric acid and ferulic acid from pomegranate, grape, and orange samples. Food Chem 2020; 325:126902. [PMID: 32387937 DOI: 10.1016/j.foodchem.2020.126902] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023]
Abstract
Magnetic dual-template molecularly imprinted polymer (Fe3O4@SiO2-MDMIP) was prepared to enrich and determine both p-Coumaric acid (p-CA) and ferulic acid (FA) based on syringe-to-syringe magnetic solid-phase microextraction (SS-MSPME). The obtained MDMIP was characterized and recognized, and then its adsorbing performance was studied. Based on the results, the Fe3O4@SiO2-MDMIP indicated selective recognition towards p-CA and FA with large adsorption capacity. The optimization of MDMIP-SS-MSPME conditions (pH, Fe3O4@SiO2-MDMIP mass, NaCl concentration, number of cycle, and elution volume) were conducted using the central composite design (CCD). Under the optimum conditions, an effectual and a convenient method was established to determine p-CA and FA in pomegranate, grapes, and orange samples based on SS-MSPME coupling with high-performance liquid chromatography-ultraviolet (HPLC-UV). Our developed method showed the limit of detection (LOD) of 0.08 ng mL-1 for p-CA and 0.07 ng mL-1 for FA. The method also indicated good linearity with R2 > 0.99 and good recoveries of 85.12-94.96% with RSDs ≤ 5.58% spiked at three various concentration levels in pomegranate, grapes, and orange samples.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Mehrabi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Amir Abbas Matin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|