1
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
2
|
Benedetti B, Di Carro M, Scapuzzi C, Magi E. Solvent-Free Determination of Selected Polycyclic Aromatic Hydrocarbons in Plant Material Used for Food Supplements Preparation: Optimization of a Solid Phase Microextraction Method. Molecules 2023; 28:5937. [PMID: 37630189 PMCID: PMC10459292 DOI: 10.3390/molecules28165937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The exploitation of waste and by-products in various applications is becoming a cornerstone of the circular economy. A range of biomasses can be employed to produce food supplements. An example is a particular extract obtained from plant buds (rich in bioactive molecules), which can be easily retrieved from cities' pruning. In order to safely use this material, its possible contamination by organic pollutants needs to be estimated. A green and simple method to detect priority polycyclic aromatic hydrocarbons (PAHs) in bud samples by head space solid phase microextraction coupled to GC-MS was developed. This strategy, optimized through experimental design and response surface methodology, requires a minimal sample pre-treatment and negligible solvent consumption. The final method was found to be accurate and sensitive for PAHs with mass up to 228 Da. For these analytes, satisfactory figures of merit were achieved, with detection limits in the range 1-4 ng g-1, good inter-day precision (relative standard deviation in the range 4-11%), and satisfactory accuracy (88-105%), along with specificity guaranteed by the selected ion monitoring detection. The method was applied to bud samples coming from differently polluted areas, thus helping in estimating the safety of their use for the production of food supplements.
Collapse
Affiliation(s)
| | | | | | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy; (B.B.); (M.D.C.); (C.S.)
| |
Collapse
|
3
|
Xu L, Hu W, Wu F, Zhang J. In situ growth of porous organic framework on iron wire for microextraction of polycyclic aromatic hydrocarbons. Talanta 2023; 264:124732. [PMID: 37279625 DOI: 10.1016/j.talanta.2023.124732] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
In this work, a novel spherical metal organic framework (MOF) was first in situ grown on the surface of iron wire (IW), in which IW served as the substrate and metal source for MOF (type NH2-MIL88) growth without adding additional metal salts in the process, while spherical NH2-MIL88 provided more active sites for further construction of multifunctional composites. Subsequently, a covalent organic framework (COF) was covalently bonded to the surface of the NH2-MIL88 to obtain the IW@NH2-MIL88@COF fibers, which were used for headspace solid-phase microextraction (HS-SPME) of polycyclic aromatic hydrocarbons (PAHs) in milk samples prior to determination by gas chromatography-flame ionization detection (GC-FID). Compared with the fiber prepared by physical coating, the IW@NH2-MIL88@COF fiber prepared by in situ growth and covalent bonding exhibits better stability and possesses more uniform layer. The extraction mechanism of the IW@NH2-MIL88@COF fiber for PAHs was discussed, which mainly owed to π-π interactions and hydrophobic interactions. After optimization of the primary extraction conditions, the SPME-GC-FID method was established for five PAHs with a wide linear range (1-200 ng mL-1), good linearity coefficient (0.9935-0.9987) and low detection limits (0.017-0.028 ng mL-1). The relative recoveries for PAHs detection in milk samples ranged from 64.69 to 113.97%. This work not only provides new ideas for the in situ growth of other types of MOF, but also provides new methods for the construction of multifunctional composites.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Wei Hu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
4
|
Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. J Chromatogr A 2022; 1671:463010. [DOI: 10.1016/j.chroma.2022.463010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
|
5
|
Delledonne A, Orlandini M, Mazzeo PP, Sissa C, Bacchi A, Terenziani F, Pelagatti P. Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Phys Chem Chem Phys 2021; 24:1191-1201. [PMID: 34932053 DOI: 10.1039/d1cp04438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new series of extended linkers containing different polyaromatic chromophores (biphenyl, naphthalene, anthracene, fluorene, 9,9-dimethylfluorene and fluorenone) functionalized with isonicotinoyl moieties have been synthesized by Pd-catalyzed cross-coupling reactions involving isonicotinamide and the appropriate aromatic dibromide. The optimized protocol led to the isolation of the target molecules in good yield and with high purity. These were characterized by 1H NMR, FTIR, MS, and elemental analysis and their solid state structures were solved by single-crystal X-ray diffraction analysis. Electronic absorption and emission spectra were collected both in solution (DMF) and in the solid state. TDDFT calculations were carried out to investigate the effect of the isonicotinoyl moieties on the spectral features of the central chromophores. Although in solution only the linker containing a fluorenone scaffold shows a weak fluorescence, all the isolated linkers turned out to be fluorescent in the solid state, thus paving the way for their use for the fabrication of fluorescent MOFs.
Collapse
Affiliation(s)
- Andrea Delledonne
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Martina Orlandini
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Paolo P Mazzeo
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Alessia Bacchi
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Terenziani
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Paolo Pelagatti
- Department of Chemical Sciences, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,CIRCC, Interuniversity Consortium of Chemical Reactivity and Catalysis, via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
6
|
Noorpoor Z. The needle trap extraction capability of a zinc-based metal organic framework with a nitrogen rich ligand. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1962524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zeinab Noorpoor
- Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
| |
Collapse
|
7
|
Wang Z, Zhang Y, Chang G, Li J, Yang X, Zhang S, Zang X, Wang C, Wang Z. Triazine-based covalent organic polymer: A promising coating for solid-phase microextraction. J Sep Sci 2021; 44:3608-3617. [PMID: 34329505 DOI: 10.1002/jssc.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Advancement of novel coating materials for solid-phase microextraction is highly needed for sample pretreatment. Herein, a triazine-based covalent organic polymer was constructed from the monomers of cyanuric chloride and trans-stilbene via the Friedel-Crafts reaction and thereafter used as a solid-phase microextraction fiber coating for the extraction of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. The newly-developed solid-phase microextraction method coupled with gas chromatography/flame ionization detection gives enhancement factors of 548-1236 and limits of detection of 0.40-2.81 ng/L for the determination of polycyclic aromatic hydrocarbons and their derivatives. The one fiber precision for five replicate determinations of the analytes and the fiber-to-fiber precision with three parallel prepared fibers, expressed as relative standard deviations, was in the range of 4.6-9.4% and 6.2-10.9%, respectively. The relative recoveries of the analytes for environmental water samples were in the range of 88.6-106.4% with the relative standard deviations ranging from 4.0 to 11.7% (n = 5).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ying Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Jinqiu Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
8
|
Balestri D, Mazzeo PP, Perrone R, Fornari F, Bianchi F, Careri M, Bacchi A, Pelagatti P. Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Roberto Perrone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Fabio Fornari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interdipartimentale per l'Energia e l'Ambiente (CIDEA) Università di Parma Parco Area delle Scienze 42 43124 Parma Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA) Università di Parma Parco Area delle Scienze 181/A 43124 Parma Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
9
|
Balestri D, Mazzeo PP, Perrone R, Fornari F, Bianchi F, Careri M, Bacchi A, Pelagatti P. Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angew Chem Int Ed Engl 2021; 60:10194-10202. [PMID: 33512039 DOI: 10.1002/anie.202017105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic frameworks (MOFs) give the opportunity of confining guest molecules into their pores even by a post-synthetic protocol. PUM168 is a Zn-based MOF characterized by microporous cavities that allows the encapsulation of a significant number of guest molecules. The pores engineered with different binding sites show a remarkable guest affinity towards a series of natural essential oils components, such as eugenol, thymol and carvacrol, relevant for environmental applications. Exploiting single crystal X-ray diffraction, it was possible to step-wisely monitor the rather complex three-components guest exchange process involving dimethylformamide (DMF, the pristine solvent) and binary mixtures of the flavoring agents. A picture of the structural evolution of the DMF-to-guest replacement occurring inside the MOF crystal was reached by a detailed single-crystal-to-single-crystal monitoring. The relation of the supramolecular arrangement in the pores with selective guests release was then investigated as a function of time and temperature by static headspace GC-MS analysis.
Collapse
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Roberto Perrone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy
| | - Fabio Fornari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interdipartimentale per l'Energia e l'Ambiente (CIDEA), Università di Parma, Parco Area delle Scienze 42, 43124, Parma, Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA), Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
10
|
Riboni N, Fornari F, Bianchi F, Careri M. A simple and efficient Solid-Phase Microextraction - Gas Chromatography - Mass Spectrometry method for the determination of fragrance materials at ultra-trace levels in water samples using multi-walled carbon nanotubes as innovative coating. Talanta 2021; 224:121891. [PMID: 33379099 DOI: 10.1016/j.talanta.2020.121891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
The occurrence of emerging contaminants is becoming of increasing importance to assess the impact of anthropogenic activities onto the environment. The present study reports for the first time the development and validation of an efficient method for the simultaneous determination of fragrance materials in water samples based on the use of a novel multiwalled carbon nanotubes (MWCNTs)-based solid-phase microextraction coating. Helical MWCNTs were selected as adsorbent material due to their outstanding extraction performance. The multicriteria method of desirability functions allowed the optimization of the experimental conditions in terms of extraction time and extraction temperature. Validation proved the reliability of the method for the determination of the analytes at ultra-trace levels, obtaining detection limits in the 0.2-13 ng/L range, good precision, with relative standard deviations lower than 20% and recovery rates in the 80 ± 12%-111 ± 11%. Superior enrichment factors compared to commercial fibers were also calculated. Finally, applicability to real sample analysis was demonstrated.
Collapse
Affiliation(s)
- N Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - F Fornari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - F Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - M Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy
| |
Collapse
|
11
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Mazzeo PP, Balestri D, Bacchi A, Pelagatti P. Stabilization of liquid active guests via nanoconfinement into a flexible microporous metal–organic framework. CrystEngComm 2021. [DOI: 10.1039/d1ce00899d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nanoconfinement of the three liquid guests within a MOF has been fully investigated in terms of host–guest interactions and framework rearrangement.
Collapse
Affiliation(s)
- Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
13
|
Arcoleo A, Bianchi F, Careri M. Helical multi-walled carbon nanotube-coated fibers for solid-phase microextraction determination of polycyclic aromatic hydrocarbons at ultra-trace levels in ice and snow samples. J Chromatogr A 2020; 1631:461589. [PMID: 33022570 DOI: 10.1016/j.chroma.2020.461589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) detected in polar environment are recognized tracers of anthropogenic pollution. High sensitivity and selectivity are required for their analysis in ice and snow samples due to the presence at ultra-trace levels. In this study a solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) method for simultaneous determination of the 16 US-EPA priority pollutant PAHs in polar snow and ice samples was developed and validated. Helical multiwalled carbon nanotubes (HMWCNTs) were proposed for the first time as novel SPME coating. For optimization purposes a Central Composite Design and the multicriteria method of the desirability functions were applied to investigate the influence of extraction parameters, i.e. time and temperature as main factors. The optimal values were 68 °C for the extraction temperature and 60 min for the extraction time. The developed SPME-GC-MS method exhibited detection limits of 16 PAHs in the 0.1-1.2 ng/L range, a repeatability and an intermediate precision within 15% and 22% relative standard deviation, respectively, and good recovery rates in the 93.7 (± 0.1)-119.7 (± 0.2)% range for real spiked water sample, showing better analytical performance compared to commercial PDMS fibers. Enrichment factors in the 2670 (± 290)-142120 (± 580) range were calculated and a long fiber shelf-life with the possibility to reuse the fiber more than 200 times was achieved. Finally, the proposed method was successfully applied to the determination of PAHs in surface snow samples collected in April 2019 at Ny-Ålesund, Svalbard. Its application to the detection of PAHs in samples collected during monitoring campaigns in the polar regions is expected in the near future.
Collapse
Affiliation(s)
- Angela Arcoleo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
14
|
Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Javanmardi H, Abbasi A, Bagheri H. Roles of metal, ligand and post synthetic modification on metal organic frameworks to extend their hydrophobicity and applicability toward ultra-trace determination of priority organic pollutants. Anal Chim Acta 2020; 1125:231-246. [PMID: 32674770 DOI: 10.1016/j.aca.2020.05.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Implementation of metal organic frameworks (MOFs) in the separation science has attracted many researchers attention. In this study, the role of metal, ligand, the reaction condition and modification on the extraction efficiency of some MOFs was investigated. Among the prevalent reported MOFs, some members of the MIL and MOF-5 families were chosen, and eleven MOF-based sorbents were prepared by changing the metal and ligand type, reaction condition, and/or functionality through post synthetic modification (PSM). MIL-101 and MIL-101-NH2 based structures were initially synthesized based on the chromium and iron salts. Also, three zinc-based structures including MOF-5, [NH2(CH3)2]2 [Zn3(C6H4(CO2)2)4].DMF.H2O and [NH2(CH3)2]2 [Zn3((C6H4)2(CO2)2)4].5DMF were synthesized. The PSM hydrophobic-oriented products of MILs were obtained by their reactions with benzyl alcohol. The resulted MOFs were characterized by FT-IR, PXRD, SEM, BET, BJH, water contact angle and TG analyses. The extraction trends of these nanostructures were studied toward some priority environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBs), and benzene homologs. The extraction procedures were performed via adapting a home-made headspace needle trap extraction (HS-NTE) setup, and determinations were followed by gas chromatography-mass spectrometry (GC-MS). Among all the synthesized nanostructures, the chromium-based PSM product of MIL-101-NH-CH2C6H5 proves its improved extraction capability for most of the model compounds. Eventually, the superior MOF was applied as the extractive phase in a HS-NTE-GC-MS method for isolation and trace determination of PAHs, in tea, coffee, and some other environmental water samples. Under the optimized conditions, the linear dynamic range (LDR) was in the range of 1-1000 ng L-1 (R2 > 0.992) while the limits of detection (LOD) and limits of quantification (LOQ) values were 0.1-0.2 and 0.3-0.7 ng L-1, respectively. Also, the extraction capability of the Cr-based MIL-101-NH-CH2C6H5 was compared with commercial polydimethyl siloxane-divinyl benzene (PDMS-DVB) fiber coating. The intra-and inter-day relative standard deviations for three replicates at the concentration levels of 20 and 500 ng L-1 were in the range of 4-7% and 5-10%, respectively. The needle-to-needle reproducibility was also found to be in the range of 6-10%. Acceptable relative recovery values at the concentration levels of 20 and 500 ng L-1 ranged from 89 to 98%, showing no significant matrix effect.
Collapse
Affiliation(s)
- Hasan Javanmardi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
17
|
Pacheco-Fernández I, Rentero M, Ayala JH, Pasán J, Pino V. Green solid-phase microextraction fiber coating based on the metal-organic framework CIM-80(Al): Analytical performance evaluation in direct immersion and headspace using gas chromatography and mass spectrometry for the analysis of water, urine and brewed coffee. Anal Chim Acta 2020; 1133:137-149. [PMID: 32993866 DOI: 10.1016/j.aca.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
A new solid-phase microextraction (SPME) fiber coating was prepared by the immobilization of the metal-organic framework (MOF) CIM-80(Al) on nitinol wires by a green in situ growth approach, using an aqueous synthetic approach, and without the need of any additional material to ensure the attachment of the MOF to the nitinol support. The coating was used for the development of headspace (HS) and direct immersion (DI) SPME methods in combination with gas chromatography and mass spectrometry (GC-MS) for the determination of polycyclic aromatic hydrocarbons (PAHs) as model compounds. Both methods were optimized and validated using the MOF-based fiber together with the commercial polydimethylsiloxane (PDMS) fiber. The MOF extraction phase exhibited superior analytical performance for most of the PAHs in HS-SPME mode (and particularly for less volatiles), while the PDMS fiber presented better results in the DI-SPME method. The analytical performance of the MOF sorbent coating in HS- and DI-SPME methods was also evaluated in urine and brewed coffee samples, without requiring any pretreatment step apart from dilution for DI-SPME experiments, thus showing suitability of the novel coatings for the analysis of complex samples. The proposed CIM-80(Al) fiber was efficient and biocompatible (for using a low cytotoxic sorbent and a biocompatible core support), and it also demonstrated stability and robustness, with inter-fiber (and inter-day) relative standard deviation values lower than 19%, and reusability for more than 80 extraction cycles using 280 °C as desorption temperature.
Collapse
Affiliation(s)
- Idaira Pacheco-Fernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Manuel Rentero
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| |
Collapse
|
18
|
Qiu J, Zhang T, Wang F, Zhu F, Ouyang G. Sheathed in situ heteroepitaxial growth metal-organic framework probe for detection of polycyclic aromatic hydrocarbons in river water and living fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138971. [PMID: 32361453 DOI: 10.1016/j.scitotenv.2020.138971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Exploring the presence of polycyclic aromatic hydrocarbons (PAHs) in aquatic environment is an important task. Metal-organic frameworks (MOF) are commonly used as sorbents for enriching PAHs but their crystal synthesis, sorbent preparation and robustness remain challenging. In the present study, under mild conditions, a novel sheathed MOF fiber coating was fabricated via in situ heteroepitaxial growth of copper-2,5-diaminoterephthalate (Cu-DAT) crystals and subsequent polyimide (PI) sheath. The copper hydroxide nanotubes were first synthesized on the copper wire to provide a substrate for further in situ heteroepitaxial Cu-DAT growth, and the coating was then sheathed with PI via a simple dip-coating procedure. The well-ranged copper hydroxide nanotubes, the unique adsorption property of Cu-DAT, and the PI sheath, the prepared fiber all contributed to a successful solid-phase microextraction (SPME) device for detecting PAHs. Results demonstrated that the SPME methods using the novel fiber possessed great sensitivity, wide linear range, good reproducibility, and the robustness was significantly improved with PI sheath. The novel SPME material was successfully applied for detection of PAHs in river water samples and in vivo detection of PAHs in fish dorsal muscle. In general, this study explored an effective and convenient method to prepare high-efficient MOF-based SPME fiber for PAHs analysis in complex environmental water samples and living organisms via in situ growth and polymer sheath.
Collapse
Affiliation(s)
- Junlang Qiu
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tianlang Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuxin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fang Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Magnetic Cu: CuO-GO nanocomposite for efficient dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons from vegetable, fruit, and environmental water samples by liquid chromatographic determination. Talanta 2020; 218:121131. [PMID: 32797888 DOI: 10.1016/j.talanta.2020.121131] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this research, we presented a magnetic dispersive micro-solid phase extraction (MD-μ-SPE) method coupled with high performance liquid chromatography (HPLC) based on the use of magnetic Cu: CuO-Graphene Oxide (GO) nanocomposite (Fe3O4/Cu: CuO/GO-NC) for the separation and preconcentration of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene (Nap), phenanthrene (Phe), anthracene (Ant), and pyrene (Pyr), in vegetable (onion, tomato, carrot, herb, watermelon, lettuce, eggplant, and chili pepper), fruit (apple, watermelon, and grape), wastewater, and water samples. The MD-μ-SPE of PAHs in matrix samples was carried out, and the impacts of pH, ionic strength, extraction time, temperature, eluent volume, and sorbent mass on the recovery of PAHs were investigated by using Placket-Burman design (PBD). In addition, by using the central composite design (CCD), the best combination of each important variable was measured. Sorbent mass of 14 mg, eluent volume of 200 μL, and 12 min extraction time at the central level of other factors were optimal conditions of pretreatment for the highest extraction recovery (ER%) of trace PAHs. Under the optimal conditions, the method proposed herein provided high enrichment factors ranged from 116.51 to 133.05, good linearity in the range of 10-3800 ng mL-1 for Pyr, 3.0-3500 ng mL-1 for Phe, 5.0-3200 ng mL-1 for Nap, and 5.0-3000 ng mL-1 for Ant with coefficient of determination (R2) values between 0.9889 and 0.9963, low limits of detection (LOD) and quantification (LOQ) in the range of 0.015-0.061 and 0.485-2.034 ng mL-1, respectively, and also satisfactory spiked recoveries (between 95.1% and 106.8%) with the relative standard deviations (RSDs) values in the range of 1.73%-5.62%. The Fe3O4/Cu: CuO/GO-NC-based MD-μ-SPE followed by HPLC-UV corroborated promising results for the convenient and effective determination of PAHs in the samples of vegetables, fruits, and environmental water. The results of this study revealed that our developed method is easy, feasible, precise, highly effective, and convenient to operate for the trace analysis of PAHs in different real samples. The extraction recovery was about 90% of the initial recovery after the sorbent usage for three times; therefore, the Fe3O4/Cu: CuO/GO-NC can readily be regenerated.
Collapse
|
20
|
Hajebi N, Seidi S, Ramezani M, Manouchehri M. Electrospun polyamide/graphene oxide/polypyrrole composite nanofibers: an efficient sorbent for headspace solid phase microextraction of methamphetamine in urine samples followed by GC-MS analysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03240a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel polyamide/graphene oxide/polypyrrole nanofiber was fabricated with the aid of the electrospinning technique and applied in headspace solid phase microextraction.
Collapse
Affiliation(s)
- Nima Hajebi
- Department of Chemistry
- Arak Branch
- Islamic Azad University
- Arak
- Iran
| | - Shahram Seidi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Majid Ramezani
- Department of Chemistry
- Arak Branch
- Islamic Azad University
- Arak
- Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| |
Collapse
|