1
|
Chai P, Geng X, Zhu R, Wu W, Wang X, Li J, Fu L, Wang H, Liu W, Chen L, Song Z. Fabrication and application of molecularly imprinted polymer doped carbon dots coated silica stationary phase. Anal Chim Acta 2023; 1275:341611. [PMID: 37524474 DOI: 10.1016/j.aca.2023.341611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Facing the difficulties in chromatographic separation of polar compounds, this investigation devotes to developing novel stationary phase. Molecularly imprinted polymers (MIPs) have aroused wide attention, owing to their outstanding selectivity, high stability, and low cost. In this work, a novel stationary phase based on carbon dots (CDs), MIP layer, and silica beads was synthesized to exploit high selectivity of MIPs, excellent physicochemical property of CDs, and outstanding chromatographic performances of silica microspheres simultaneously. The MIP doped CDs coated silica (MIP-CDs/SiO2) stationary phase was systematically characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurement, and carbon elemental analysis. Furthermore, the chromatographic performance of the MIP-CDs/SiO2 column was thoroughly assessed by using a wide variety of compounds (including nucleosides, sulfonamides, benzoic acids, and some other antibiotics). Meanwhile, the separation efficiency of the MIP-CDs/SiO2 stationary phase was superior to other kinds of stationary phases (e.g. nonimprinted NIP-CDs/SiO2, MIP/SiO2, and C18-SiO2). The results demonstrated that MIP-CDs/SiO2 column exhibited best performance in terms of chromatographic separation. For all tested compounds, the resolution value was not less than 1.60, and the column efficiency of MIP-CDs/SiO2 for thymidine was 22,740 plates/m. The results further indicate that the MIP-CDs/SiO2 column can combine the good properties of MIP, CDs, with those of silica microbeads. Therefore, the developed MIP-CDs/SiO2 stationary phase can be applied in the separation science and chromatography-based techniques.
Collapse
Affiliation(s)
- Peijun Chai
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuhui Geng
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Ruirui Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuesong Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
3
|
Effect of phenyl numbers in polyphenyl ligand on retention properties of aromatic stationary phases. J Chromatogr A 2022; 1674:463152. [PMID: 35597197 DOI: 10.1016/j.chroma.2022.463152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Aromatic phase, as one type of reversed-phase stationary phases, shows complementary selectivity to the n-alkyl counterparts especially for certain challenging separation tasks. However, effect of phenyl numbers in aromatic ligands on retention behaviors has rarely been addressed compared with the alkyl stationary phases. To illustrate the issue, a series of polyphenyl stationary phases were facially prepared via the coupling chemistry of isocyanate with amine, including aniline (π1), 4-aminobiphenyl (π2), 4-amino-p-terphenyl (π3) and [1,1':4',1'':4'',1'''-quaterphenyl]-4-amine (π4), respectively. The chromatographic behaviors of the new stationary phases as well as the traditional C18 were systematically compared in terms of retention mode, hydrophobic and aromatic selectivity, shape selectivity and π-π interaction by various analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons congeners and substituted benzenes with electron-withdrawing groups. Due to the homologous structure of four polyphenyl ligands, the hydrophobic selectivity, aromatic selectivity and shape selectivity of stationary phases increase with phenyl numbers in the bonded polyphenyl ligands, whereas the increment becomes insignificant from U-π3 to U-π4. This phenomenon is explained by the insertion degree of analytes in the polyphenyl ligand brushes. Compared with the homemade C18, the polyphenyl phases indicate insignificant changes of shape selectivity with temperature. Notably, the new polyphenyl phases demonstrate the great selective separation towards the electron-deficient compounds through the π-π interaction. These findings make up for the understanding of the retention behavior of aromatic stationary phases.
Collapse
|
6
|
Zhong Z, Chu Z, Dong Z, Zhang W, Zhang L. The separation characteristics and performance evaluation of the silica-based poly(pentabromostyrene) stationary phase in capillary electrochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5764-5771. [PMID: 34816827 DOI: 10.1039/d1ay01594j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A mixed-mode capillary column packed with silica-based poly(pentabromostyrene) particles (denoted as SiO2@pPBS) was prepared and applied to capillary electrochromatography (CEC) separation. With the presence of benzene rings and bromine atoms in polymer chains, the SiO2@pPBS column provides a reversed-phase/hydrophilic mixed-mode retention mechanism owing to hydrophilic, hydrophobic and π-π interactions between the stationary phase and various analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides, phenols and anilines. In CEC mode, the separation behavior of charged solutes is not only related to the interaction with the stationary phase, but also influenced by electrophoretic effects, which may lead to different selectivities compared to high performance liquid chromatography (HPLC). A column efficiency of up to 1.22 × 105 N m-1 was achieved for p-chloroaniline. Besides, the RSDs of retention time of anilines for run to run (n = 5), day to day (n = 5) and column to column (n = 3) were all less than 4.4%. Finally, the SiO2@pPBS capillary column was applied to the separation of coking wastewater with satisfactory results. All the results demonstrated that the SiO2@pPBS capillary packed column with RP/HILIC mixed-mode has great application potential.
Collapse
Affiliation(s)
- Zhihua Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ziyi Dong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Shang C, Fan F. Preparation of ionogel-bonded mesoporous silica and its application in liquid chromatography. NEW J CHEM 2021. [DOI: 10.1039/d1nj03244e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new preparation strategy for stable ionogels on silica obtained by a chemical bonding method and its application in LC.
Collapse
Affiliation(s)
- Ce Shang
- E&D Research Institute of Liaohe Oilfield Company, Panjin, 124010, China
| | - Fangbin Fan
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|