1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2024; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Rujiralai T, Rungsawang N, Hama N, Sirimahachai U, Salea A, Putson C. Novel polyvinyl alcohol/gum tragacanth molecularly imprinted-electrospun nanofibers as adsorbent for selective solid phase extraction of bisphenol A. Int J Biol Macromol 2024; 278:134706. [PMID: 39151869 DOI: 10.1016/j.ijbiomac.2024.134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
A polyvinyl alcohol/gum tragacanth molecularly imprinted nanofiber fabricated by electrospinning (PVA/GT-MIN) was used as an efficient adsorbent for the solid phase extraction (SPE) of bisphenol A (BPA) in water samples. PVA and GT were functional polymers and BPA was the template for molecular imprinting. BPA was bound to the polymer matrix through hydrogen bonding. The SEM image of PVA/GT-MIN demonstrated a rough morphology with pores and a diameter of 501 nm. The data for the adsorption of BPA on PVA/GT-MIN fitted the Freundlich isotherm and pseudo-second-order kinetics models. The proposed SPE using PVA/GT-MIN coupled with high performance liquid chromatography-diode array detection presented good linearity from 50 μg/L-5 mg/L (R2 = 0.9999) and yielded a limit of detection of 21 μg/L. The PVA/GT-MIN was applied to extract bottled water for BPA analysis and recoveries were 93.1-97.7 % (RSDs ≤ 3.6 %). This study presents a novel, easily prepared PVA/GT-MIN adsorbent for the extraction of BPA in water.
Collapse
Affiliation(s)
- Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| | - Narin Rungsawang
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Nuryanee Hama
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Uraiwan Sirimahachai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ahamad Salea
- Materials Physics Laboratory, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chatchai Putson
- Materials Physics Laboratory, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Shahsavani A, Fakhari AR. Facile extraction and determination of organophosphorus pesticides using poly (8-hydroxyquinoline) functionalized magnetic multi-walled carbon nanotubes nanocomposite in water, fruits, and vegetables samples. Food Chem 2024; 447:138848. [PMID: 38458129 DOI: 10.1016/j.foodchem.2024.138848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
This study presents a dispersive micro-solid phase extraction (D-μ-SPE) approach for extracting and determining of two organophosphorus pesticides (OPPs), including diazinon and chlorpyrifos as model analytes in various samples. For this purpose, we synthesized, characterized, and utilized magnetic multi-walled carbon nanotubes coated with poly 8-hydroxyquinoline (MWCNTs/Fe3O4@PHQ) as a novel sorbent. The impact of various parameters, including sorbent type, sample pH, sample volume, sorbent amount, desorption solvent (type and volume), extraction time, and ionic strength on the extraction efficiency was investigated and optimized. Following the extraction, the desorbed pesticides in acetone were analyzed using gas chromatography with an FID detector. Under the optimized experimental conditions, the proposed method showed excellent linearity in the range of 3-1000 µg/L, low detection limit (0.9-1.5 µg/L), good relative recoveries (86-101.5 %), and high precision (RSD < 6.5 %). Finally, the applicability of this method was evaluated by analyzing the target OPPs in a variety of real samples, and obtained satisfactory results.
Collapse
Affiliation(s)
- Abolfath Shahsavani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 198396-3113, Evin, Tehran, I.R. Iran
| | - Ali Reza Fakhari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 198396-3113, Evin, Tehran, I.R. Iran.
| |
Collapse
|
4
|
Sulaiman N, Hama N, Saithong S, Rujiralai T. A novel magnetite C18/paracetamol/alginate adsorbent bead for simultaneous extraction of synthetic antioxidants and bisphenol A in water samples. RSC Adv 2024; 14:18136-18146. [PMID: 38854826 PMCID: PMC11155554 DOI: 10.1039/d4ra02720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024] Open
Abstract
A novel magnetic composite bead was synthesized using carbon 18, paracetamol and alginate (mC18/Pa/Alg). The bead was applied to simultaneously adsorb butylated hydroxytoluene, butylated hydroxyanisole, and bisphenol A from water samples by magnetic solid-phase extraction (MSPE). The adsorbed analytes were determined by gas chromatography-flame ionization detection. The morphology and composition of the bead were examined by field emission scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction analysis, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface analysis. The best condition of MSPE included an adsorbent bead made with 0.8% sodium alginate, a 0.3 g adsorbent dose, a sample solution pH of 7, and a desorption time of 20 min in methanol. The proposed method exhibited linearity at concentrations between 0.015 and 1.00 μg mL-1 of analytes. Limits of detection ranged from 6.86 to 9.66 ng mL-1. Recoveries from 80.3 to 100.1% were achieved with interday and intraday precisions (RSDs) of 0.4-4.3%.
Collapse
Affiliation(s)
- Nurma Sulaiman
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| | - Nuryanee Hama
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| | - Saowanit Saithong
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| |
Collapse
|
5
|
A V M, K A, I BM. An integrated approach to remove endocrine-disrupting chemicals bisphenol and its analogues from the aqueous environment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1518-1546. [PMID: 37768753 PMCID: wst_2023_280 DOI: 10.2166/wst.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) used as a plastic enhancer in producing polycarbonate resins to manufacture hard plastics. Due to strict limitations on the manufacturing and utilization of BPA, several bisphenol substitutes, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF), have been developed to replace it in various applications. Because of their widespread use in food containers, infant bottles, and reusable water bottles, bisphenols (BPs) have been identified in different environmental circumstances, including drinking water, seawater, industrial effluent, and endocrine systems such as human blood, urine, and breast milk. However, locating and analyzing them in different conditions has proven to be challenging. Therefore, there is a need to reduce the prevalence of BPs in the environment. The significance of advanced treatment options for treating and eliminating BPA and its alternatives from water bodies are reviewed. Also, the research gaps and future scopes are discussed in this review article. According to the literature survey, adsorption and photocatalytic degradation provide synergistic benefits for environmental challenges because of their substantial adsorption Q5 capacity, high oxidation capability, and low cost compared to alternative individual treatment options.
Collapse
Affiliation(s)
- Monica A V
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India E-mail:
| | - Anbalagan K
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Becky Miriyam I
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
6
|
Xie Y, Du G, Pang J, Kong L, Lu L. One-step preparation of magnetic N-doped sodium alginate-based porous carbon and efficient adsorption of bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99842-99854. [PMID: 37615913 DOI: 10.1007/s11356-023-29346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
To resourcefully utilize algal biomass and effectively remove bisphenol A (BPA) from water, sodium alginate (SA) was prepared as the nitrogen-doped magnetic porous carbon material (SAC/N/Fe) with well-developed pore structure according to a one-step method using K2CO3, melamine, Fe(NO3)3·9H2O as the activator, nitrogen dopant, and magnetic precursor, respectively, in this study. The best product, SAC/N/Fe-0.2, was obtained by adjusting the mass ratio of raw materials, and its specific surface area and pore volume were 2240.65 m2 g-1 and 1.44 cm3 g-1, respectively, with a maximum adsorption capacity of 1248.23 mg g-1 for BPA at 308 K. SEM, XRD, XPS, VSM, and FT-IR characterization confirmed that the iron was successfully doped, giving the porous carbon a magnetic separation function. The adsorption process of BPA was more consistent with the Langmuir model and the proposed secondary kinetics, and the adsorption effect was stable and efficient in a wide pH range and under the interference of different metal ions. At the same time, the porous carbon was easy to separate and recover with good regeneration performance.
Collapse
Affiliation(s)
- Yaping Xie
- Shandong Transportation Research Institute, Jinan, 25100, China
| | - Guoxing Du
- Shandong Road and Bridge Engineering Design Consulting Co., Ltd., Jinan, 250014, China
| | - Jiaju Pang
- Shandong High Speed Engineering Construction Group Co., Ltd., Jinan, 250014, China
| | - Linghan Kong
- Shandong Transportation Research Institute, Jinan, 25100, China
| | - Linguo Lu
- Shandong Transportation Research Institute, Jinan, 25100, China.
| |
Collapse
|
7
|
Xu T, Zhang R, Bi Y, Li J, Li X, Chen L, Fang Z. Electrospun Polycrown Ether Composite Nanofibers as an Adsorbent for On-Line Solid Phase Extraction of Eight Bisphenols from Drinking Water Samples with Column-Switching Prior to High Performance Liquid Chromatography. Polymers (Basel) 2022; 14:polym14214765. [PMID: 36365764 PMCID: PMC9659129 DOI: 10.3390/polym14214765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Bisphenols (BPs) are a class of endocrine disruptors widely existing in the environment. They have a great impact on human health owing to their environmental endocrine disrupting effects, chronic toxicity, neurotoxicity, cytotoxicity and genetic toxicity. In this paper, an on-line packed fiber solid phase extraction (PFSPE) coupling with column-switching HPLC-FLD determination method was developed for the determination of eight BPs in drinking water. The poly (dibenzo-18-crown-6-ether)/polystyrene composite nanofibers (PDB18C6/PS) were prepared by electrospinning and used as an adsorbent for the on-line PFSPE column. The on-line PFSPE-HPLC equipment contained a dual ternary pump and a switching valve to enable enrichment, purification, and analysis directly in the system. The results showed that the proposed on-line PFSPE-HPLC-FLD method realized the simultaneous separation and detection of eight BPs: BPF, BPE, BPA, BPB, BPAF, BPAP, BPC and BPZ. The curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.998) in the range of 50−1000 pg/mL. The limit of detection (S/N = 3) was 20 pg/mL, the limit of quantitation (S/N = 10) is 50 pg/mL. The recoveries of eight BPs were 94.8−127.3%, and the intra-day precisions (RSD) were less than 10%. The PFSPE column made of the PDB18C6/PS composite nanofibers has stable properties and can be reused at least 200 times. In the detection of drinking water samples, BPZ was detected in nearly 80% of drinking water samples, and BPA, BPAP, BPF and BPAF were also detected in some water samples. This high level of integration and automation was achieved in pretreatment of eight BPs from water samples. The proposed simple, rapid, and practical method has been successfully applied to the detection of eight BPs in drinking water, which can provide powerful technical support for drinking water quality and safety monitoring.
Collapse
Affiliation(s)
- Tong Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Rui Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yueling Bi
- Department of Pharmacy, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Jingjing Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohuan Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liqin Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Correspondence: (L.C.); (Z.F.)
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Correspondence: (L.C.); (Z.F.)
| |
Collapse
|
8
|
Ding H, Zhang Z, Li Y, Ding L, Sun D, Dong Z. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on π-π electron donor-acceptor interaction. BIORESOURCE TECHNOLOGY 2022; 364:128018. [PMID: 36162783 DOI: 10.1016/j.biortech.2022.128018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel Fe/Mn/N co-doped biochar (Fe&Mn-NBC800) derived from waste apple tree branches was fabricated for bisphenol A (BPA) removal. Fe&Mn-NBC800 exhibited higher adsorption capacity (84.96 mg·g-1) in 318 K for BPA than the pristine biochar, doped mono-atomic, and di-atomic biochar. Higher temperature and adsorbent dosage promoted BPA removal, while higher solution pH was detrimental to the adsorption process. The kinetic and isothermal processes of BPA removal followed the pseudo-second-order model and Langmuir, respectively. Characterizations and correlation analysis indicated that π-π interactions showed the major contribution to the BPA adsorption. Furthermore, the pore filling, electrostatic interactions, hydrogen bonding, and hydrophobic interactions also played a role. Good water environment anti-interference ability (ion species, ionic strength, actual water body) and excellent recyclability of Fe&Mn-NBC800 make it exhibit the potential for engineering projects.
Collapse
Affiliation(s)
- Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Jiangsu Branch, North China Municipal Engineering Design & Research Institute Co. Ltd., Nanjing 210019, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Dongxiao Sun
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| | - Zhiqiang Dong
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| |
Collapse
|
9
|
Qu J, Zhang X, Liu S, Li X, Wang S, Feng Z, Wu Z, Wang L, Jiang Z, Zhang Y. One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 361:127718. [PMID: 35917861 DOI: 10.1016/j.biortech.2022.127718] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Herein, magnetic nitrogen doped porous biochar (Fe/N-PBC) was prepared by mixing KHCO3, K2FeO4 and CO(NH2)2 through one-step pyrolysis, and was employed for adsorbing Cr(VI) and BPA in water. The whole co-activated process was accompanied with pore-forming, carbon thermal reduction and element doping. Specifically, the developed microporous structures and high surface area of Fe/N-PBC (1093.68 m2/g) were achieved under synergistic activation of KHCO3 and K2FeO4. Meanwhile, carbon thermal reduction process successfully converted K2FeO4 to Fe0 with introduction of heterocyclic-N (pyrrolic N and pyridinic N) structures by CO(NH2)2 doping. Fe/N-PBC exhibited outstanding uptake for Cr(VI) (340.96 mg/g) and BPA (355.14 mg/g), and possessed favorable regeneration properties after three cycles. Notably, the high-performance Cr(VI) removal was associated to reduction, electrostatic interaction, complexation, pore filling and ion exchange, while pore filling, hydrogen-bonding interaction and π-π stacking were responsible for BPA binding. This work presents reasonable design of Fe/N-carbon materials for Cr(VI)/BPA polluted water remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shiqi Liu
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaojuan Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyue Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
10
|
Sobhi HR, Mohammadzadeh F, Behbahani M, Yeganeh M, Esrafili A. Application of a modified MWCNT-based d-µSPE procedure for determination of bisphenols in soft drinks. Food Chem 2022; 385:132644. [PMID: 35287103 DOI: 10.1016/j.foodchem.2022.132644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
Herein, a facile dispersive micro-solid phase extraction (d-µSPE) procedure using carboxylated multi-walled carbon nanotubes modified with silver nanoparticles (Ag/MWCNTs-COOH) was successfully developed for the adsorption and subsequent determination of low levels of two well-known contaminants, namely bisphenol A and S (BPA and BPS) in water and soft drink samples. The detection and measurement of the above-mentioned compounds were performed by HPLC-UV instrument. The applied d-µSPE procedure has several advantages such as rapidity, high degree of sensitivity, precision and efficiency. A combination of polar/non-polar interactions seems to play a key role in the adsorption process. Under the optimized conditions, the calibration curves were linear over the concentration range of 1-500 µg/L for the both targets. The practical limit of quantifications (LOQ) for the both analytes were determined to be 1.0 µg/L. The average relative recoveries obtained from the fortified samples varied between 92 and 110% with the relative standard deviations (RSD%) of 2.9-9.5%.
Collapse
Affiliation(s)
| | | | - Mohammad Behbahani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Iran
| |
Collapse
|
11
|
Sorouraddin SM, Farajzadeh MA, Khosroshahian S. Vortex-assisted magnetic dispersive solid phase extraction using Tanacetum extract followed by dispersive liquid–liquid microextraction for the extraction and preconcentration of Co(II) and Ni(II) from high volume of water samples. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Han X, Zhang X, Zhong L, Yu X, Zhai H. Preparation of sulfamethoxazole molecularly imprinted polymers based on magnetic metal–organic frameworks/graphene oxide composites for the selective extraction of sulfonamides in food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Victoria Matos Oliveira R, Ferreira dos Santos A, Danielly Lima Santos M, da Costa Cunha G, Pimenta Cruz Romão L. Magnetic solid-phase extraction of bisphenol A from water samples using nanostructured material based on graphene with few layers and cobalt ferrite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Excellent performance separation of trypsin by novel ternary magnetic composite adsorbent based on betaine-urea- glycerol natural deep eutectic solvent modified MnFe 2O 4-MWCNTs. Talanta 2022; 248:123566. [PMID: 35653959 DOI: 10.1016/j.talanta.2022.123566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
The effective trypsin purification methods should be established since trypsin plays a crucial role in biosome. In this work, a novel ternary magnetic composite adsorbent (MnFe2O4-MWCNTs@B-U-G) with the features of strong specific selectivity, good adsorption effect, simple and efficient separation process, no secondary pollution brought in was prepared by integrating the superior physicochemical properties of ternary based natural deep eutectic solvent, multi-walled carbon nanotubes and MnFe2O4. The property, composition and microtopography structure of MnFe2O4-MWCNTs@B-U-G were characterized in detail. Combined with magnetic solid-phase extraction, MnFe2O4-MWCNTs@B-U-G was utilized to adsorb trypsin. Response surface methodology experiment was prepared under Box-Behnken design to optimize the adsorption conditions and the results showed that the practical maximum adsorption capacity for trypsin was 1020.1 mg g-1. Besides, the adsorption isotherms, adsorption kinetics, regeneration studies and method validation studies were investigated systematically to evaluate the established adsorption separation system. Mechanism exploration proved that electrostatic interaction, hydrogen bonding interaction and chelation interaction were the dominant forces for the high-performance adsorption of trypsin. The activity of trypsin after elution had been analyzed by UV-vis spectrophotometer and CD spectrometer with three methods, which illustrated that the enzyme activity, conformation and secondary structure of trypsin did not change significantly during the adsorption-desorption process. In addition, the proposed method was successful and practical applicability to isolation trypsin from crude bovine pancreas. As a result, due to the superiority of the MnFe2O4-MWCNTs@B-U-G, the proposed method not only exhibites high-performance adsorption of trypsin, but also provides a green and sustainable potential value in the adsorption of biomacromolecule.
Collapse
|
15
|
Parvizzad K, Sorouraddin SM, Farajzadeh MA. Preparation of a magnetic sorbent based on Tanacetum extract and its application in the extraction of Cu(II) and Pb(II) ions from milk performed in a narrow-bore tube followed by dispersive liquid–liquid microextraction. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Bayatloo MR, Nojavan S. Rapid and simple magnetic solid-phase extraction of bisphenol A from bottled water, baby bottle, and urine samples using green magnetic hydroxyapatite/β-cyclodextrin polymer nanocomposite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Li L, Zhang Y, Yang S, Zhang S, Xu Q, Chen P, Du Y, Xing Y. Cobalt-loaded cherry core biochar composite as an effective heterogeneous persulfate catalyst for bisphenol A degradation. RSC Adv 2022; 12:7284-7294. [PMID: 35424685 PMCID: PMC8982249 DOI: 10.1039/d1ra09236g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Persulfate (PS)-based advanced oxidation processes have drawn tremendous attention for the degradation of recalcitrant pollutants, and cobalt composites are effective for PS activation to generate reactive species. In this study, composites of cobalt species loaded on cherry core-derived biochar (Co/C) were prepared with a one-step pyrolysis method. The Co/C catalyst was applied as a catalyst for PS activation to degrade bisphenol A (BPA). Factors influencing the degradation efficiency were examined, including the ratio of raw materials, Co/C and PS dosages, temperature, and solution pH. The Co/C catalyst prepared when the ratio of raw material was 1 : 1 (Co/C-50) could efficiently activate both peroxymonosulfate (PMS) and peroxydisulfate (PDS). When the initial concentration of BPA was 20 mg L-1, complete removal of BPA was achieved in the Co/C-50-PMS and Co/C-50-PDS systems within 8 min and 10 min, respectively. More than 70% of BPA could be mineralized in the Co/C-50-PS system. The free radical quenching experiments demonstrated that in the Co/C-50-PS system, the degradation of BPA was achieved through free radical, surface-bound free radical, and non-free radical pathways. The successful preparation of the Co/C-50-PS catalyst broadens the application of cobalt-based carbon materials in the activation of PS to remove organic pollutants.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yuanyuan Zhang
- Environmental Monitor Station of Yantai No. 118, Qingnian South Road Yantai 264000 Shandong province China
| | - Shuangshuang Yang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Qiang Xu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Pinzhu Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yaxuan Du
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| | - Yuxin Xing
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University Yantai 264025 Shandong province China +086 0535-6695905 +086 0535-6696162
| |
Collapse
|
18
|
Zheng ALT, Boonyuen S, Li GY, Ngee LH, Andou Y. Design of reduced graphene hydrogel with alkylamine surface functionalization through immersion/agitation method and its adsorption mechanism. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Cao H, Zhang P, Jia W, Wang C, Xing B. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil. CHEMOSPHERE 2021; 277:130259. [PMID: 33773320 DOI: 10.1016/j.chemosphere.2021.130259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study, two magnetic multi-walled carbon nanotubes (MMWCNTs) with different ratios of Fe2+/Fe3+ were prepared, and the effects of different fractions of dissolved humic acid (DHA) on the adsorption of phenanthrene by multi-walled carbon nanotubes (MWCNTs) and MMWCNTs from the aqueous solution were investigated. The adsorption kinetics of DHA1 and DHA4 were best fitted with pseudo-second order model. The adsorption of DHAs on MMWCNTs was weaker than that on MWCNTs, and DHA1 was easier to adsorb to MWCNTs and MMWCNTs than DHA4. The phenanthrene adsorption capacities by 1:2:1MMWCNTs and 4:2:1MMWCNTs with higher polar groups and magnetic gradient were less than that of MWCNTs. The pH value had no obvious effect on the adsorption of phenanthrene to MWCNTs loaded with different iron. Additionally, the DHAs could form soluble complexes of DHAs-Fe (II) in solution to reduce the phenanthrene adsorption on MMWCNTs, DHA1 inhibit more obviously phenanthrene adsorbed onto MWCNTs and MMWCNTs than DHA4. As for MMWCNTs, the main mechanisms of phenanthrene adsorbed onto it included new adsorption sites formed by π-π interaction and magnetic gradient. In this study, MMWCNTs after adsorbed DHAs had a weaker inhibitory effect on phenanthrene adsorption than MWCNTs, implying that when phenanthrene is adsorbed by DHAs-coated MMWCNTs, the bioavailability and mobility of phenanthrene will be reduced, and it is easy to be removed by the magnet for further processing.
Collapse
Affiliation(s)
- Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
Preparation of chitosan-modified magnetic Schiff base network composite nanospheres for effective enrichment and detection of hippuric acid and 4-methyl hippuric acid. J Chromatogr A 2021; 1652:462373. [PMID: 34246963 DOI: 10.1016/j.chroma.2021.462373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
Chitosan-modified magnetic Schiff base network composite nanospheres (Fe3O4@SNW@Chitosan) were prepared for the enrichment and detection of hippuric acid (HA) and 4-methyl hippuric acid (4-MHA) via magnetic solid phase extraction (MSPE) connected with HPLC. The SNW was one of the covalent organic framework, which constructed through covalent bonds, shown comprising solvent stability, low density and accessible pores. The obtained Fe3O4@SNW@Chitosan has many merits as a magnetic sorbent, including a hydrophilic surface, uniform pore size, unique ordered channel structure, and superparamagnetism. The favourable linearity of this MSPE-HPLC method was in the range of 1-1000 μg L-1, and LODs of HA and 4-MHA were 0.3 μg L-1 and 0.2 μg L-1, respectively. The recoveries in urine samples were range from 95.3 to 109.0 % with the RSD less than 9.6 %. When employed for the enrichment of HA and 4-MHA, Fe3O4@SNW@Chitosan exhibited great potential as a candidate for preconcentration.
Collapse
|
21
|
Bardajee GR, Sharifi M, Torkamani H, Vancaeyzeele C. Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep and its application in the drug delivery of tetracyceline hydrochloride. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Schwaminger SP, Brammen MW, Zunhammer F, Däumler N, Fraga-García P, Berensmeier S. Iron Oxide Nanoparticles: Multiwall Carbon Nanotube Composite Materials for Batch or Chromatographic Biomolecule Separation. NANOSCALE RESEARCH LETTERS 2021; 16:30. [PMID: 33569639 PMCID: PMC7876204 DOI: 10.1186/s11671-021-03491-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Carbon-based materials are the spearhead of research in multiple fields of nanotechnology. Moreover, their role as stationary phase in chromatography is gaining relevance. We investigate a material consisting of multiwall carbon nanotubes (CNTs) and superparamagnetic iron oxide nanoparticles towards its use as a mixed-mode chromatography material. The idea is to immobilize the ion exchange material iron oxide on CNTs as a stable matrix for chromatography processes without a significant pressure drop. Iron oxide nanoparticles are synthesized and used to decorate the CNTs via a co-precipitation route. They bind to the walls of oxidized CNTs, thereby enabling to magnetically separate the composite material. This hybrid material is investigated with transmission electron microscopy, magnetometry, X-ray diffraction, X-ray photoelectron and Raman spectroscopy. Moreover, we determine its specific surface area and its wetting behavior. We also demonstrate its applicability as chromatography material for amino acid retention, describing the adsorption and desorption of different amino acids in a complex porous system surrounded by aqueous media. Thus, this material can be used as chromatographic matrix and as a magnetic batch adsorbent material due to the iron oxide nanoparticles. Our work contributes to current research on composite materials. Such materials are necessary for developing novel industrial applications or improving the performance of established processes.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| | - Markus W Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Florian Zunhammer
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Nicklas Däumler
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
23
|
A green hybrid microextraction for sensitive determination of bisphenol A in aqueous samples using three different sorbents: Analytical and computational studies. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Huelsmann RD, Will C, Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J Sep Sci 2020; 44:1148-1173. [PMID: 33006433 DOI: 10.1002/jssc.202000923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|