1
|
Moussaei M, Tajik E, Haddadi-Asl V, Mazloumi SA, Heydarinasab H, Abdollahi E, Haj-Sadeghi F, Ahmadi H, Gholizadeh MR. Achieving enhanced stabilization and controlled release of curcumin via cross-linked polydopamine particles. Heliyon 2025; 11:e41379. [PMID: 39811346 PMCID: PMC11729636 DOI: 10.1016/j.heliyon.2024.e41379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles. This method yields XPDPs with a mean particle size of 0.55 μm, significantly smaller than PDA particles (1.025 μm), resulting in a higher surface area favorable for drug loading. The adsorption mechanism involves electron sharing and covalent bonding between the carrier and drug molecules. The adsorption, release, and drug delivery kinetics of the XPDPs are compared with those of the non-crosslinked PDA particles. The results demonstrate that XPDPs exhibit improved adsorption properties due to their crosslinked structure and increased positive charge due to presence of secondary amines. During a 28-h period, curcumin release from PDA declines from around 80 %-40 %, while for XPDA, it decreases from approximately 60 %-35 % as the pH shifts from 7.4 to 5. While PDA particles display a burst release profile, XPDPs show a more gradual and sustained release, attributed to their enhanced structural stability. Molecular simulations were conducted to estimate the solubility parameters, confirming the compatibility between PDA and dextran for effective drug loading.
Collapse
Affiliation(s)
- Majid Moussaei
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Ebrahim Tajik
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - S. Ali Mazloumi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Helia Heydarinasab
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Elahe Abdollahi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Fatemeh Haj-Sadeghi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Hanie Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mohammad Reza Gholizadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
2
|
Alavifar SM, Golshan M, Hosseini MS, Salami-Kalajahi M. Coumarin-Modified Starch Fluorescent Nanoparticles as Sensor of Fe 3+ and Zn 2+ ions Utilizing Dynamic Quenching and Chelation Mechanisms. J Fluoresc 2024:10.1007/s10895-024-03752-3. [PMID: 38739316 DOI: 10.1007/s10895-024-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Zinc and iron are two essential trace minerals that play a pivotal role in maintaining optimal health and well-being in the human body. Despite being required in relatively small quantities, their significance can be understated as they participate in a wide array of critical physiological processes such as oxygen transport, DNA synthesis, controlling nutrient availability, etc. Understanding the distribution and behavior of these ions in natural water bodies is essential for assessing water quality, studying ecological processes, and managing environmental impacts. In this study, we have developed a dual fluorescence probe using starch which was functionalized with coumarin derivatives, for efficient detection of Fe3+ and Zn2+ ions. This structure led a self-assembled starch/coumarin (SC) fluorescent nanoparticles with strong fluorescence intensity under ultraviolet light (365 nm). The quenching effect of Fe3+ on the SC fluorescent probe enabled efficient specific detection of Fe3+. Furthermore, Zn2+ ions increased fluorescence intensity of coumarin compounds (λemission = 459). This phenomenon occurs when the coumarin compound forms a complex or interacts with the zinc ion, resulting in enhanced fluorescence emission. In summary, the developed fluorescent probe offered a promising approach for sensitive and specific detection of iron and zinc ions in aqueous solutions.
Collapse
Affiliation(s)
- Seyyed-Mahdi Alavifar
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Marzieh Golshan
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mahdi Salami Hosseini
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
3
|
Hong Y, Yu H, Wang L, Chen X, Huang Y, Yang J, Ren S. Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems. Curr Pharm Des 2022; 28:3175-3193. [PMID: 35676840 DOI: 10.2174/1381612828666220608130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/28/2023]
Abstract
Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles' development would be discussed in this review.
Collapse
Affiliation(s)
- Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
4
|
Oloub M, Hosseinzadeh R, Tajbakhsh M, Mohadjerani M. A new fluorescent boronic acid sensor based on carbazole for glucose sensing via aggregation-induced emission. RSC Adv 2022; 12:26201-26205. [PMID: 36275092 PMCID: PMC9473643 DOI: 10.1039/d2ra04110c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
A water-soluble fluorescent sensor based on carbazole pyridinium boronic acid (CPBA) was designed and synthesized. Its structure has been confirmed by CHN and 1H and 13C NMR, FT-IR, and MS spectral data. Fluorescence studies of the synthesized chemosensor CPBA showed a selective ratiometric fluorescent response for glucose among different monosaccharides. The results specified that CPBA is a pH-sensitive sensor that behaves differently in the absence and presence of glucose in the pH range 4-10. The pH, DLS, Job's plot, UV-visible, and fluorescence titration studies showed that the selectivity of CPBA towards glucose is through the aggregation-induced emission (AIE) phenomenon. The fluorescence emission intensity of CPBA changes by more than 2100 fold by adding glucose, whereas it is 2 fold for fructose. The calculated binding constant value of CPBA for glucose (K = 2.3 × 106 M-1) is 85 times greater than for fructose, indicating the high affinity of the sensor for glucose.
Collapse
Affiliation(s)
- Mandana Oloub
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Maryam Mohadjerani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran Babolsar Iran
| |
Collapse
|
5
|
|
6
|
Khaksar E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. Core–shell to Janus morphologies from co-assembly of polyaniline and hydrophobic polymers in aqueous media. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Razavi B, Soleymani-Kashkooli M, Salami-Kalajahi M, Roghani-Mamaqani H. Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Abou El Fadl FI, Elbarbary AM. Radiation synthesis and characterization of heterogeneous magnetic nanocomposites of 2-hydroxyethyl methacrylate for catalytic degradation of sandocryl blue dye. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Azadbakht M, Salami‐Kalajahi M, Esmizadeh E, Vahidifar A. Synthesis of poly(styrene‐
co
‐allylamine)‐
b
‐poly(2‐(dimethylamino)ethyl methacrylate) graft copolymers via “grafting from” atom transfer radical polymerization and their self‐assembly in aqueous media. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maryam Azadbakht
- Department of Chemical Engineering University of Bonab Bonab Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Elnaz Esmizadeh
- Department of Chemical Engineering University of Bonab Bonab Iran
| | - Ali Vahidifar
- Department of Chemical Engineering University of Bonab Bonab Iran
| |
Collapse
|
12
|
Arjmand F, Salami‐Kalajahi M, Roghani‐Mamaqani H. Fabrication of acid‐labile poly(2‐hydroxyethyl methacrylate) nanoparticles using aldazine‐based crosslinker as
pH
‐sensitive drug nanocarriers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fereshteh Arjmand
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| |
Collapse
|
13
|
Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Melavanki R, Kusanur R, Sadasivuni KK, Singh D, Patil N. Investigation of interaction between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state and time resolved fluorescence spectroscopy and molecular docking. Heliyon 2020; 6:e05081. [PMID: 33083597 PMCID: PMC7550931 DOI: 10.1016/j.heliyon.2020.e05081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 02/01/2023] Open
Abstract
Binding interactions of boronic acid derivatives viz. 2-Methylphenylboronic acid (B1) and 3-Methoxyphenylboronic acid (B2) with mono saccharides (arabinose, fructose and galactose) and disaccharides (sucrose, lactose and maltose) in aqueous condition at pH 7.4 by means of fluorescence spectroscopy is reported in the present investigation. Sugar sensing as well as continuous glucose monitoring (CGM) plays a significant role in diabetes regulation. Sugar sensors mediated through enzymes have their own drawbacks, which led to encouragement to search for designing new sensors through alternate approaches. Among many, fluorescence-based sensors are drawing more attention. Boronic acid-based fluorescence sensors have the capacity to bind reversibly with diols, which makes their demand high in applications. Addition of sugar reduces fluorescence intensities. Change in intensities is associated to cleavage of intermolecular hydrogen bonding which leads in reduced stability of boronate ester. Lineweaver-Burk and Benesi-Hildebrand equation is used for analysing data. Mono sugars are estimated to have higher binding constants. Mutarotation leads to structural changes in saccharides which play a key role in binding interactions. Sugars in furanose form are found to be highly favoured for binding. Molecular docking of B1 and B2 with proteins with PDB ID: 2IPL and 2IPM being periplasmic was done with the help of Schrodinger Maestro 11.2 version. GLIDE scores terms are used for expressing binding affinity.
Collapse
Affiliation(s)
- Raveendra Melavanki
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India1
- Corresponding author.
| | - Raviraj Kusanur
- Department of Chemistry, R V College of Engineering, Bangalore, Karnataka, 560059, India1
| | | | - Diksha Singh
- Department of Physics, M S Ramaiah University of Applied Science, Bengaluru, Karnataka 560058, India
| | - N.R. Patil
- Department of Physics, B.V.B. College of Engineering & Technology, Hubli, Karnataka 580031, India
| |
Collapse
|
15
|
Melavanki R, Sharma K, Yallur BC, Kusanur R, Sadasivuni KK, Singh D, Mane S, Katagi K, Pattar SV. Understanding the binding interaction between phenyl boronic acid P1 and sugars: determination of association and dissociation constants using S-V plots, steady-state spectroscopic methods and molecular docking. LUMINESCENCE 2020; 36:163-168. [PMID: 32790047 DOI: 10.1002/bio.3931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 11/07/2022]
Abstract
Continuous monitoring of glucose and sugar sensing plays a vital role in diabetes control. The drawbacks of the present enzyme-based sugar sensors have encouraged the investigation into alternate approaches to design new sensors. The popularity of fluorescence sensors is due to their ability to bind reversibly to compounds containing diol. In this study we investigated the binding ability of phenyl boronic acid P1 for monosaccharides and disaccharides (sugars) in aqueous medium at physiological pH 7.4 using steady-state fluorescence and absorbance. P1 fluorescence was quenched due to formation of esters with sugars. Absorbance and fluorescence measurements led to results that indicated that the sugars studied could be ordered in terms of their affinity to P1, as stated: sucrose > lactose > galactose > xylose > ribose > arabinose. In each case, the slope of modified Stern-Volmer plots was nearly 1, indicating the presence of only a single binding site in boronic acids for sugars. Docking studies were carried out using Schrodinger Maestro v.11.2 software. The binding affinity of phenyl boronic acid P1 with periplasmic protein (PDB ID 2IPM and 2IPL) was estimated using GlideScore.
Collapse
Affiliation(s)
- Raveendra Melavanki
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India.,Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Kalpana Sharma
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India.,Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Basappa Chanabasapa Yallur
- Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India.,Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | - Raviraj Kusanur
- Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India.,Department of Chemistry, R V College of Engineering, Bangalore, Karnataka, India
| | | | - Diksha Singh
- Department of Physics, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Science, Bengaluru, Karnataka, India
| | - Smita Mane
- Department of Chemistry, Karnatak Science College, Dharwad, India
| | - Kariyappa Katagi
- Department of Chemistry, Karnatak Science College, Dharwad, India
| | - Shridhar V Pattar
- Department of Studies in Biochemistry, Karnataka University Dharwad, Karnataka, India
| |
Collapse
|