1
|
Aygun A, Ozveren E, Halvaci E, Ikballi D, Elhouda Tiri RN, Catal C, Bekmezci M, Ozengul A, Kaynak I, Sen F. The performance of a very sensitive glucose sensor developed with copper nanostructure-supported nitrogen-doped carbon quantum dots. RSC Adv 2024; 14:34964-34970. [PMID: 39493548 PMCID: PMC11528916 DOI: 10.1039/d4ra06566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Fluorescent glucose sensors often utilize nanotechnology to detect glucose in a sensitive and targeted manner. Nanoscale materials increase the sensitivity and efficiency of sensors by better understanding and managing the properties and interactions of the structure to be sensed. Nitrogen-doped carbon quantum dots (N-CQD), which work with the concept of fluorescence quenching or switching on because of specific processes in the presence of glucose, are one type of nanoscale material added to these sensors. In the field of biological material identification, this state-of-the-art technology is recognized as a useful tool. In this work, copper nanostructure-supported nitrogen-doped carbon quantum dots (Cu@N-CQDs) were synthesized by the hydrothermal method. The shape and structure of the fabricated materials were characterized using fluorescence (FL) spectrophotometry, Fourier Transform Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction, and UV-visible spectrophotometry (UV-vis). The proposed sensor has a linear range of 0-140 μM and a limit of detection (LOD) of 29.85 μM, showing high sensitivity and selectivity for glucose sensing by FL. The developed sensor was successfully applied to detect glucose and demonstrated the potential of Cu@N-CQDs as promising candidates for designing sensors for glucose measurement.
Collapse
Affiliation(s)
- Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Esra Ozveren
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Ebru Halvaci
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Damla Ikballi
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Cansu Catal
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Muhammed Bekmezci
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Alper Ozengul
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| | - Idris Kaynak
- Machinery and Metal Technologies, Vocational School of Technical Sciences, Usak University 1 Eylul Campus 64200 Usak Turkiye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Kutahya Dumlupinar University Evliya Celebi Campus 43100 Kutahya Turkiye
| |
Collapse
|
2
|
Shahid K, Alshareef M, Ali M, Yousaf MI, Alsowayigh MM, Khan IA. Direct Growth of Nitrogen-Doped Carbon Quantum Dots on Co 9S 8 Passivated on Cotton Fabric as an Efficient Photoelectrode for Water Treatment. ACS OMEGA 2023; 8:41064-41076. [PMID: 37970001 PMCID: PMC10633820 DOI: 10.1021/acsomega.3c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..
Collapse
Affiliation(s)
- Kinza Shahid
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Mumtaz Ali
- Department
of Textile Engineering, National Textile
University, Faisalabad 37610, Pakistan
| | - Muhammad Imran Yousaf
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Marwah M. Alsowayigh
- Chemistry
Department, College of Science, King Faisal
University, P.O. 380, Al-Ahsa 31982, Kingdom
of Saudia Arabia
| | - Imtiaz Afzal Khan
- Interdisciplinary
Research Center for Membranes and Water Security, King Fahad University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
4
|
Development of green photocatalyst using empty fruit bunches from Elaeis guineensis for methylene blue degradation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Liu H, Chen Q, Hou J, Yang G, Feng W. One‐Step Hydrothermal Synthesis of Boric Acid‐Functionalized Carbon Dots and their Applications in Glucose Sensing. ChemistrySelect 2022. [DOI: 10.1002/slct.202202223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huiling Liu
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Qinqin Chen
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Juan Hou
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Guang Yang
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Wei Feng
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| |
Collapse
|
6
|
Chi H, Li Y, Liu G. A molecularly imprinted electrochemical sensor based on a
MoS
2
/peanut shell carbon complex coated with
AuNPs
and nitrogen‐doped carbon dots for selective and rapid detection of benzo(a)pyrene. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yujie Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| |
Collapse
|
7
|
Li D, Chen C, Guo X, Liu C, Yang W. A simple electrochemiluminesecence aptasenor using a GCE/NCQDs/aptamers for detection of Pb. ENVIRONMENTAL TECHNOLOGY 2022; 43:2270-2277. [PMID: 33428535 DOI: 10.1080/09593330.2021.1871661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
An electrochemiluminescence (ECL) aptasensor was prepared to detect Pb2+ with nitrogen-doped carbon quantum dots (NCQDs) as ECL materials. To prepare the working electrode, NCQDs with carboxyl groups were loaded on a glassy carbon electrode (GCE) and then Pb2+ aptamers were covalently bound to the NCQDs to form a stable GCE/NCQDs/aptamers. On addition of Pb2+, the chain aptamers change to a pb2+ G-quadruplex conformation, which lead to a large decrease in the ECL intensity. The variation of intensity and the logarithm of the Pb2+ concentration had a good linear relationship (R2 = 0.998). The detection range was wide (50 pM to 387.9 nM) with a low detection limit (18.9 pM). In interference experiments, the ECL Pb2+ aptasensor did not suffer from interference and it had good stability. The NCQDs ECL aptasensor can detect Pb2+ quickly and accurately, and provides a fast and efficient method for detection of Pb2+. Compared with literatures, the Pb2+ aptasensor has simpler preparation process, lower cost; furthermore, it is more environmentally friendly.
Collapse
Affiliation(s)
- Danyang Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Chi Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xuefei Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
8
|
Rani P, Ahmed B, Singh J, Kaur J, Rawat M, Kaur N, Matharu AS, AlKahtani M, Alhomaidi EA, Lee J. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29:103296. [PMID: 35574283 PMCID: PMC9092993 DOI: 10.1016/j.sjbs.2022.103296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles play a significant role in biomedical sciences due to their unique properties allowing for their use as an effective sensing and remediation platform Herein, the green synthesis of silver nanostructures (Ag NSs), prepared via aqueous extract of waste Brassica oleracea leaves in the presence of silver nitrate solution (10-4 M), is reported. The Ag NSs are fully characterized and their efficacy with respect to 4-nitrophenol reduction, glucose sensing, and microbes is determined. Visually, the color of silver nitrate containing solution altered from colorless to yellowish, then reddish grey, confirming the formation of Ag NSs. HRTEM and SEAD studies revealed the Ag NSs to have different morphologies (triangular, rod-shaped, hexagonal, etc., within a size range of 20-40 nm) with face-centered cubic (fcc) crystal structure. The Ag NSs possess high efficacy for nitrophenol reduction (<11 min and degradation efficiency of 98.2%), glucose sensing (LOD: 5.83 µM), and antimicrobial activity (E. coli and B. subtilis with clearance zones of 18.3 and 14 mm, respectively). Thus, the current study alludes towards the development of a cost-effective, sustainable, and efficient three-in-one platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Jasmeen Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Navjot Kaur
- Rayat Institute of Pharmacy, Railmajra, SBS Nagar, Punjab 144533, India
| | - Avtar Singh Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Muneera AlKahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman A.H. Alhomaidi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| |
Collapse
|
9
|
Zhang D, Qu W, Zhang S. Selective Detection of Nitrofurantoin by Carbon Dots with Blue‐Emissive Fluorescence. ChemistrySelect 2022. [DOI: 10.1002/slct.202201160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dianlong Zhang
- Department of Chemistry Shanxi Datong University Datong Shanxi 037000 P. R. China
| | - Wenshan Qu
- Department of Chemistry Shanxi Datong University Datong Shanxi 037000 P. R. China
| | - Shen Zhang
- Department of Chemistry Taiyuan Normal University Jinzhong 030619 Shanxi China
| |
Collapse
|
10
|
Gao X, Wang L, Sun C, Zhou N. Research on Preparation Methods of Carbon Nanomaterials Based on Self-Assembly of Carbon Quantum Dots. Molecules 2022; 27:molecules27051690. [PMID: 35268791 PMCID: PMC8911832 DOI: 10.3390/molecules27051690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Here, based on self-assembly of carbon quantum dots (CDs), an innovative method to prepare nanomaterials under the action of a metal catalyst was presented. CDs were synthesized by a one-step hydrothermal method with citric acid (CA) as the carbon source, ethylenediamine (EDA) as the passivator and FeSO4•7H2O as the pre-catalyst. In the experiment, it was found that the nano-carbon films with a graphene-like structure were formed on the surface of the solution. The structure of the films was studied by high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), etc. The results demonstrated that the films were formed by the self-assembly of CDs under the action of the gas–liquid interface template and the metal catalyst. Meanwhile, the electrochemical performance of the films was evaluated by linear cyclic voltammetry (CV) and galvanostatic charge discharge (GOD) tests. In addition, the bulk solution could be further reacted and self-assembled by reflux to form a bifunctional magnetic–fluorescent composite material. Characterizations such as X-ray diffractometer (XRD), fluorescence spectra (FL), vibrating sample magnetometer (VSM), etc. revealed that it was a composite of superparamagnetic γ-Fe2O3 and CDs. The results showed that self-assembly of CDs is a novel and effective method for preparing new carbon nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Nan Zhou
- Correspondence: ; Tel.: +86-13-766-873-464
| |
Collapse
|
11
|
Gao X, Ma Z, Sun M, Liu X, Zhong K, Tang L, Li X, Li J. A highly sensitive ratiometric fluorescent sensor for copper ions and cadmium ions in scallops based on nitrogen doped graphene quantum dots cooperating with gold nanoclusters. Food Chem 2022; 369:130964. [PMID: 34479006 DOI: 10.1016/j.foodchem.2021.130964] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
Based on the electrostatic interaction, we constructed a ratiometric fluorescence nanomixture of graphene quantum dots-gold nanoclusters (GQDs-AuNCs) for the quantitative detection of Cu2+ and Cd2+. When Cu2+ or Cd2+ was added into the reaction system, the fluorescence of GSH-AuNCs at 565 nm can be quenched by Cu2+ and enhanced by Cd2+ while the intensity of N-GQDs at 403 nm stayed constant. Under the optimized conditions, the fluorescence intensity ratio (I565/I403) of the GQDs-AuNCs system was proportional to the concentration of Cu2+ and Cd2+ in the range of 8×10-8 mol/L-6×10-6 mol/L and 1×10-6 mol/L-4×10-5 mol/L, respectively, with detection limits of 4.12×10-9 mol/L and 9.43×10-7 mol/L, respectively. In the presence of Cu2+ and Cd2+, the paper-based vision sensor would produce visible fluorescent color changes, which can be used for rapid detection on site. The method has been successfully applied to the determination of Cu2+ and Cd2+ in scallops with satisfactory results.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China
| | - Zhiying Ma
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China
| | - Minjun Sun
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China
| | - Keli Zhong
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lijun Tang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, China.
| |
Collapse
|
12
|
Saladino GM, Kilic NI, Brodin B, Hamawandi B, Yazgan I, Hertz HM, Toprak MS. Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2165. [PMID: 34578481 PMCID: PMC8470909 DOI: 10.3390/nano11092165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
Nanoparticle (NP)-based contrast agents enabling different imaging modalities are sought for non-invasive bio-diagnostics. A hybrid material, combining optical and X-ray fluorescence is presented as a bioimaging contrast agent. Core NPs based on metallic rhodium (Rh) have been demonstrated to be potential X-ray Fluorescence Computed Tomography (XFCT) contrast agents. Microwave-assisted hydrothermal method is used for NP synthesis, yielding large-scale NPs within a significantly short reaction time. Rh NP synthesis is performed by using a custom designed sugar ligand (LODAN), constituting a strong reducing agent in aqueous solution, which yields NPs with primary amines as surface functional groups. The amino groups on Rh NPs are used to directly conjugate excitation-independent nitrogen-doped carbon quantum dots (CQDs), which are synthesized through citrate pyrolysis in ammonia solution. CQDs provided the Rh NPs with optical fluorescence properties and improved their biocompatibility, as demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the hybrid NPs are confirmed with confocal microscopy, and X-ray Fluorescence (XRF) phantom experiments.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Nuzhet I. Kilic
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Bejan Hamawandi
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Idris Yazgan
- Center of Biosensors and Materials, Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu 37150, Turkey;
| | - Hans M. Hertz
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Muhammet S. Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| |
Collapse
|
13
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang H, Zhou Q, Han X, Li M, Yuan J, Wei R, Zhang X, Wu M, Zhao W. Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119736. [PMID: 33813150 DOI: 10.1016/j.saa.2021.119736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the methods for rapidly detecting antibiotics using the unique fluorescent properties of carbon dots have attracted increasing attentions. The purpose of this study is to prepare carbon dots by hawthorn and establish a rapid fluorescence sensor for the detection of chlortetracycline in pork samples. An environmentally friendly nitrogen-doped carbon dots (N-CDs) with hawthorn powder as the carbon source and diethylenetriamine (DETA) as the nitrogen source was synthesized by one-pot hydrothermal process. The preparation conditions of the N-CDs were optimized. Subsequently, the characteristics of the N-CDs were elucidated by fluorescence, UV absorption, transmission electron microscope, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The N-CDs showed a quantum yield of 22.96%, emission at 447 nm at the maximum excitation wavelength of 370 nm and an average particle diameter of 3.17 nm. Meanwhile, the factors affecting the fluorescence intensity of the N-CDs were studied. Moreover, the fluorescence quenching method for detecting chlortetracycline in pork was established and optimized. Under the best experimental conditions, the linear range (R2 = 0.9992) was developed over 0.4-20 μg mL-1 with a detection limit of 0.073 ± 0.005 μg mL-1 (S/N = 3). Chlortetracycline in pork samples had been successfully detected with good recoveries of 93.62%-103.18%, which suggested that the study provided a new approach for the detection of chlortetracycline in pork.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Qian Zhou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Xue Han
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding 071000, PR China
| | - Jing Yuan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Ran Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Xiaofu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Mengying Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Wen Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China.
| |
Collapse
|