1
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
2
|
Qi L, Wang Z, Chen J, Xie JW. Development and validation of a QuEChERS-HPLC-DAD method using polymer-functionalized melamine sponges for the analysis of antipsychotic drugs in milk. Food Chem 2024; 444:138553. [PMID: 38309075 DOI: 10.1016/j.foodchem.2024.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The prohibition of antipsychotic drugs in animal foodstuffs has raised significant concerns. In this study, a novel matrix purification adsorbent comprising a polymer (polyaniline and polypyrrole)-functionalized melamine sponge (Ms) was employed for the high performance liquid chromatography-diode array detector (HPLC-DAD) detection of three phenothiazines (chlorpromazine, thioridazine, and promethazine), and a tricyclic imipramine in milk. The as-prepared functionalized Ms was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. Excellent linearity with a coefficient of determination (R2) of 0.999 was achieved for all drugs within the concentration range of 0.01-47.00 μg mL-1. The recoveries of the four analytes ranged from 92.1 % to 106.9 % at the three spiked levels. These results demonstrate the successful application of the proposed method for the determination of the four drugs. Cost-effective polymer-functionalized Ms is a viable alternative for matrix purification, enabling rapid determination of drug residues in diverse food samples.
Collapse
Affiliation(s)
- Liang Qi
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhe Wang
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian-Wu Xie
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Zhang Z, Han W, Qing J, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133189. [PMID: 38071772 DOI: 10.1016/j.jhazmat.2023.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.
Collapse
Affiliation(s)
- Zelin Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wei Han
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Jiang Qing
- Ningbo HEIGER Electrics Co., Ltd, Ningbo 315300, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
4
|
Wang T, Jin C, Jiang W, Zhao T, Xu Y, Li H. Determination of five mTOR inhibitors in human plasma for hepatocellular carcinoma treatment using QuEChERS-UHPLC-MS/MS. J Pharm Biomed Anal 2023; 235:115652. [PMID: 37633163 DOI: 10.1016/j.jpba.2023.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
A fast and reliable QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method for pre-processing combined with Ultra - high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) was established for the analysis of five mammalian rapamycin target protein (mTOR) inhibitors (vistusertib, AZD8055, pictilisib, everolimus, temsirolimus)in human plasma. Extraction was achieved by addition of acetonitrile to the sample followed by anhydrous magnesium sulfate and 30 mg C18 for salting out and purification, respectively. MTOR inhibitors were detected using selective response monitoring (SRM) under positive ion electrospray mode. Vistusertib, AZD8055 and pictilisib showed good linearity with a range of 1-80 ng/ml, Additionally, the concentration of everolimus and temsirolimus was 2.5-200 ng/ml and10-800 ng/ml, respectively. The linear correlation coefficient (R2) of each analysis was ≥ 0.9950. The limit of detection (LOD) and Limit of Quantitation (LOQ) were 0.015-0.75 ng/ml and 1-10 ng/ml, respectively. This method showed a high accuracy with high recovery rate and excellent stability. This method is fast, accurate and reliable, suitable for quantitative detection of mTOR inhibitors in human plasma.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Chengcheng Jin
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wen Jiang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Tingting Zhao
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Yanmei Xu
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China
| | - Hui Li
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China.
| |
Collapse
|
5
|
Olędzka I, Plenis A, Kowalski P, Bączek T, Roszkowska A. Analytical aspects of sample handling during the quantification of selective serotonin reuptake inhibitors in clinical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Radić J, Perović D, Gričar E, Kolar M. Potentiometric Determination of Maprotiline Hydrochloride in Pharmaceutical and Biological Matrices Using a Novel Modified Carbon Paste Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239201. [PMID: 36501902 PMCID: PMC9739387 DOI: 10.3390/s22239201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Potentiometry with membrane selective electrodes is preferable for measuring the various constituents of pharmaceuticals. In this work, carbon paste electrodes (CPE) were prepared, modified, and tested for the determination of maprotiline hydrochloride, which acts as an antidepressant. The proposed CPE was based on an ionic association complex of maprotiline-tetraphenylborate, 2-nitrophenyloctyl as a binder, and sodium tetraphenylborate as an ionic lipophilic additive. The optimized composition improved potentiometric properties up to theoretical Nernst response values of -59.5 ± 0.8 mV dec-1, in the concentration range of maprotiline from 1.6 × 10-7 to 1.0 × 10-2 mol L-1, and a detection limit of 1.1 × 10-7 mol L-1. The CPE provides excellent reversibility and reproducibility, exhibits a fast response time, and is applicable over a wide pH range. No significant effect was observed in several interfering species tested. The proposed electrode was used for the precise determination of maprotiline in pure solutions, urine samples, and a real sample-the drug Ludiomil.
Collapse
Affiliation(s)
- Josip Radić
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Dorotea Perović
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia
| | - Ema Gričar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mitja Kolar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Chen D, Wang B, Xu XL, Zhang MY, Bu XM, Yang S, Luo Y, Xu X. Kapok fiber-supported liquid extraction for convenient oil samples preparations: A feasibility and proof-of-concept study. J Chromatogr A 2022; 1681:463480. [PMID: 36095972 DOI: 10.1016/j.chroma.2022.463480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel kapok fiber-supported liquid extraction (KF-SLE) method was developed for conveniently extracting analytes from oil samples. Natural kapok fiber without any pretreatment was directly used as an oil support medium. The extraction device was conveniently constructed by directly packing some kapok fibers into a syringe tube. Due to the fibrous property of the kapok fiber, no filter plate was needed. The cost of a KF-SLE device was as low as 0.5 CNY. The KF-SLE process was conveniently conducted using a simple three-step protocol: (1) the oil sample without any pretreatment including dilution was added directedly; (2) then, the oil-immiscible extractant was added; (3) after waiting a certain time for static extraction, the extractant was eluted out by pressing the kapok fibers with the syringe plunger. The extractant could be directly transferred for subsequent instrumental detection. For the feasibility and proof-of-concept study, the method was applied to quantify four synthetic flavor chemicals in edible oils. Satisfied quantification results were obtained with the correlation coefficient (R2) being greater than 0.996, the relative recoveries ranging from 92.90% to 107.53% and intra- and inter-day RSDs being less than 7.56%. All in all, for the first time, the SLE technique was expanded to process oil samples and the method has the characteristics of low cost, environmental friendliness, high sample processing throughput and ease of automation, offering a promising approach for edible oil sample preparations.
Collapse
Affiliation(s)
- Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Li Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Man-Yu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Miao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Yang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanbo Luo
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, Henan, China.
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Zhou S, Zhang L, Guo C, Zhong Y, Luo X, Pan X, Yang Z, Tan L. Comparing liquid-liquid, solid-phase, and supported-liquid extraction for the determination of polycyclic aromatic hydrocarbons in serum samples and their application for human biomonitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen S, Li S, Fang K, Wang Y, Yang Y, Han C, Shen Y. Rapid determination of 93 banned industrial dyes in beverage, fish, cookie using solid-supported liquid-liquid extraction and ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry. Food Chem 2022; 388:132976. [PMID: 35447592 DOI: 10.1016/j.foodchem.2022.132976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Banned industrial dyes are composed of a large number of chemicals with diverse physical and chemical properties, making their simultaneous determination a challenging task. A one-step extraction and purification of 93 banned industrial dyes from beverage, fish and cookie sample methods was proposed by using solid supported liquid-liquid extraction (SLE). The extract was analyzed by ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS). The quantitative and qualitative mode adopts Q-Orbitrap-HRMS full scan MS (full scan MS1) and data-dependent MS/MS (dd-MS2) acquisition mode. The mass resolution was screened under 70,000 FWHM for full-scan MS1 and 35,000 FWHM for dd-MS2. Linearity was observed in the range of 0.01 ∼ 0.5 μg/mL and the limits of quantification were 0.04 ∼ 0.2 mg/kg for 93 dyes. The average recoveries were 70.5-105.8%, with RSD ≤ 10%. The proposed method has the ability to simultaneously screen many banned dyes in foods with high throughput, sensitivity and reliability.
Collapse
Affiliation(s)
- Shubing Chen
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Shuang Li
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Keyi Fang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yongjian Wang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yan Yang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
A simulation study of an applied approach to enhance drug recovery through electromembrane extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Jiang W, Zhao T, Zhen X, Jin C, Li H, Ha J. Rapid Determination of 9 Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma in Human Plasma by QuEChERS-UPLC-MS/MS. Front Pharmacol 2022; 13:920436. [PMID: 35800447 PMCID: PMC9253689 DOI: 10.3389/fphar.2022.920436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
A reliable and rapid method employing QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) pretreatment coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was successfully developed and validated for the analysis of nine tyrosine kinase inhibitors (TKIs) in human plasma. Biological samples were extracted with acetonitrile and salted out with 350 mg of anhydrous magnesium sulfate (MgSO4), followed by purification with 40 mg of ethyl enediamine-N-propylsilane (PSA) adsorbents. All analytes and internal standards (IS) were separated on the Hypersil GOLD VANQUISH C18 (2.1 mm × 100 mm, 1.9 μM) column using the mobile phases composed of acetonitrile (phase A) and 0.1% formic acid in water (phase B) for 8.0 min. Detection was performed by selection reaction monitoring (SRM) in the positive ion electrospray mode. Lenvatinib, sorafenib, cabozantinib, apatinib, gefitinib, regorafenib, and anlotinib rendered good linearity over the range of 0.1–10 ng/ml, and 1–100 ng/ml for tivantinib and galunisertib. All linear correlation coefficients for all standard curves were ≥ 0.9966. The limits of detection (LOD) and the limits of quantitation (LOQ) ranged from 0.003 to 0.11 ng/ml and 0.01–0.37 ng/ml, respectively. The method was deemed satisfactory with an accuracy of -7.34–6.64%, selectivity, matrix effect (ME) of 90.48–107.77%, recovery, and stability. The proposed method is simple, efficient, reliable, and applicable for the detection of TKIs in human plasma samples as well as for providing a reference for the clinical adjustment of drug administration regimen by monitoring the drug concentrations in the plasma of patients.
Collapse
Affiliation(s)
- Wen Jiang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Tingting Zhao
- College of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xiaolan Zhen
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China
| | - Chengcheng Jin
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Hui Li
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang, China
- *Correspondence: Hui Li, ; Jing Ha,
| | - Jing Ha
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- *Correspondence: Hui Li, ; Jing Ha,
| |
Collapse
|
12
|
Guo S, Huang C, Bo C, Ma S, Gong B, Ou J. Comparison of vancomycin-immobilized chiral stationary phase with its derivative for enantioseparation of drugs in high-performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Soares S, Rosado T, Barroso M, Gallardo E. New Method for the Monitoring of Antidepressants in Oral Fluid Using Dried Spot Sampling. Pharmaceuticals (Basel) 2021; 14:ph14121284. [PMID: 34959684 PMCID: PMC8709135 DOI: 10.3390/ph14121284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/02/2023] Open
Abstract
The increase in the consumption of antidepressants is a public health problem worldwide, as these are a class of compounds widely used in the treatment of several illnesses, such as depression and anxiety. This work aimed to develop and optimize a method for the quantification of a number of antidepressants and their metabolites (fluoxetine, venlafaxine, O-desmethylvenlafaxine, citalopram, sertraline, and paroxetine) in 100 µL of oral fluid using the dried saliva spots (DSS) sampling approach and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The method was validated, presenting linearity within the studied range, with detection and quantification limits ranging between 10 and 100 ng/mL, and coefficients of determination (R2) of at least 0.99 for all analytes. Recoveries were between approximately 13 and 46%. The analysis of precision and accuracy presented acceptable coefficients of variation and relative errors, considering the criteria usually accepted in the validation of bioanalytical procedures. The method herein described is the first to be reported using DSS for the extraction of antidepressants, proving to be a sensitive, simple, and fast alternative to conventional techniques, and capable of being routinely applied in clinical and forensic toxicology scenarios.
Collapse
Affiliation(s)
- Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal;
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (S.S.); (T.R.)
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
- Correspondence: ; Tel.: +35-127-532-9002
| |
Collapse
|
14
|
Chen L, Wang J, Xu T, Feng X, Huang C, Shen X. Recent sample pretreatment methods for determination of selective serotonin reuptake inhibitors (SSRIs) in biological samples. J Pharm Biomed Anal 2021; 206:114364. [PMID: 34543943 DOI: 10.1016/j.jpba.2021.114364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLU), sertraline (SER), paroxetine (PAR), fluvoxamine (FLV) and citalopram (CIT) have been the first treatment drugs for pregnant and breastfeeding women. Quantitative analysis of SSRIs in biological samples is extremely needed in public health and clinical practice. During the analysis, sample pretreatment is an important step that can obtain an accurate quantitative analysis of SSRIs in the complex samples. The present paper discussed the recent development of sample preparation methods for SSRI analysis. Traditional sample preparation techniques such as liquid liquid extraction (LLE) and solid phase extraction (SPE), which have been widely used in the separation of SSRIs in biological samples, were extensively presented. Moreover, the new sample preparation techniques including liquid phase microextraction (LPME), solid phase microextraction (SPME), electromembrane extraction (EME) and other miniaturized extraction techniques, which are becoming highly popular in SSRI analysis, were also critically reviewed. In this review, both the advantages and disadvantages of these sample pretreatment methods were addressed. As a summary, we prospected the challenges and promising directions for the future of sample pretreatment methods in SSRI analysis.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jincheng Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Tyllis Xu
- Shanghai American School, 258 Jinfeng Road, Minhang District, Shanghai 201107, China; Wuhan Egaotech Company Lmt., 9F, Building 3, Science and Technolge new energy Base, East Lake High-Tech District, Wuhan 430075, China
| | - Xinrui Feng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|