1
|
Afzal MH, Pervaiz W, Huang Z, Wang Z, Li G, Liu H. In situ synthesis of a UIO-66-NH 2@Ti 3C 2 composite for advanced electrochemical detection of acetaminophen. NANOSCALE 2025; 17:4444-4454. [PMID: 39868527 DOI: 10.1039/d4nr04388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acetaminophen (AP) is a widely used analgesic and antipyretic drug, but its excessive use poses health risks and contributes to environmental contamination. In response to the need for rapid, accurate, and cost-effective detection methods, we developed a highly sensitive and selective electrochemical sensor for AP. The sensor was based on a composite of UIO-66-NH2 (UN) and an MXene (Ti3C2). UIO-66-NH2 was in situ synthesized onto the MXene via a one-step hydrothermal process with a varying MXene content, followed by calcination at 300 °C under an argon (Ar) flow. This treatment induced the formation of TiO2 on the MXene surface and increased the interlayer spacing, which enhanced its electrochemical performance. The resulting UN@Ti3C2-C electrode exhibited remarkable electrochemical activity due to the high surface area and excellent conductivity of the MXene. The fabricated sensor demonstrated a simple yet effective approach for the rapid and quantitative detection of AP, with a linear detection range of 0.032-160 μM and a low detection limit of 10 nM. Moreover, the sensor was successfully applied to detect AP in different water samples, validating its potential as a reliable and efficient tool for AP monitoring.
Collapse
Affiliation(s)
- Muhammad Hussnain Afzal
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
| | - Wajeeha Pervaiz
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, China
| | - Zhuo Huang
- Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, 289 Huangpu Street, Wuhan, Hubei, China
| | - Zhengyun Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
| | - Guangfang Li
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
| | - Hongfang Liu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
| |
Collapse
|
2
|
Yang F, Zhu L, Xu Z, Han Y, Lin X, Shi J, Sun Z, Duan X. Multi-active photocatalysts of biochar-doped g-C 3N 4 incorporated with polyoxometalates for the high-efficient degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124715. [PMID: 39151784 DOI: 10.1016/j.envpol.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Sulfamethoxazole (SMX) is one of major antibiotic contaminants in current aqueous environment. In this paper, waste loofah and melamine were co-carbonized to prepare biochar-doped g-C3N4 (CCN) by a one-pot method and then combined with Co2PMo11VO40 (CoPMoV) using a binder to obtain the novel polyoxometalates (POMs) photocatalytic composites (CCN/CoPMoV). The incorporation of CoPMoV dramatically reduced the photogenerated carrier recombination and led to a small band gap. Under visible light, the synergetic activation from biochar, g-C3N4 and POMs can remove 98.5% of SMX (k = 0.215 min-1) in the peroxymonosulfate (PMS) system within 20 min and keep its high stability with the degradation of 88.9% after five cycles. Multi-active sites from CCN/CoPMoV are contributed to develop the most active species of SO4-∙, ·OH, 1O2, and h+. The validity in the degradation of SMX makes CCN/CoPMoV a promising and potential material for the removal of aqueous pollutants in the future.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Lihe Zhu
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Zushen Xu
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Yongwei Han
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Xue Lin
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Zhong Sun
- School of Chemical Engineering, Northeast Electric Power University, 169 Changchun Road, Shipyard District, Jilin, 132012, China
| | - Xixin Duan
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
3
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
4
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
5
|
Masihpour N, Hassaninejad-Darzi SK, Sarvary A. Nickel-Cobalt Salen Organometallic Complexes Encapsulated in Mesoporous NaA Nanozeolite for Electrocatalytic Quantification of Ascorbic Acid and Paracetamol. J Inorg Organomet Polym Mater 2023; 33:1-20. [PMID: 37359386 PMCID: PMC10199302 DOI: 10.1007/s10904-023-02708-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023]
Abstract
Goal of current study was fabrication of novel voltammetric nanosensor for the synchronize quantification of ascorbic acid (AA) and paracetamol (PAR) by nickel-cobalt salen complexes encapsulated in the supercages of NaA nanozeolite modified carbon paste electrode (NiCoSalenA/CPE). For this purpose, NiCoSalenA nanocomposite was firstly prepared and characterized by various methods. Also, cyclic voltammetry (CV), choronoamperometry (CHA) and differential pulse voltammetry (DPV) were utilized to evaluate performance of the modified electrodes. The effects of pH and modifier amount were considered on the electrochemical oxidation of AA and PAR on the surface of NiCoSalenA/CPE. Results from this method indicated that pH of 3.0 in phosphate buffer solution (0.1 M) and 15 wt% of NiCoSalenA nanocomposite in the modified CPE results in the maximum current density. The oxidation signals of AA and PAR was amplified affectively at NiCoSalenA/CPE versus unmodified CPE. The limit of detection (LOD) and linear dynamic range (LDR) for the simultaneous measurement of them were founds to be 0.82 and 2.73-80.70 for AA and 0.51 µM, 1.71-32.50 and 32.50-137.60 µM for PAR, respectively. The catalytic rate constants (kcat) were attained to be 3.73 × 107 and 1.27 × 107 cm3 mol-1 s-1 for AA and PAR via CHA method, respectively. Also, the amounts of diffusion coefficient (D) were found to be 1.12 × 10-7 and 1.92 × 10-7 cm2 s-1 for AA and PAR, respectively. The average value of electron transfer rate constant between NiCoSalenA/CPE and PAR was obtained to be 0.016 s-1. The NiCoSalen-A/CPE displayed worthy stability, repeatability and extraordinary recovery for simultaneous measurements of AA and PAR. Application of offered sensor was confirmed by quantifying concentrations of AA and PAR in human serum solution as a real sample.
Collapse
Affiliation(s)
- Nafiseh Masihpour
- Department of Chemistry, Faculty of Basic Science, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| | - Seyed Karim Hassaninejad-Darzi
- Department of Chemistry, Faculty of Basic Science, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| | - Afshin Sarvary
- Department of Chemistry, Faculty of Basic Science, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| |
Collapse
|
6
|
Ghadirinataj M, Hassaninejad-Darzi SK, Emadi H. An electrochemical nanosensor for simultaneous quantification of acetaminophen and acyclovir by ND@Dy2O3-IL/CPE. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Valenga MGP, Martins G, Martins TAC, Didek LK, Gevaerd A, Marcolino-Junior LH, Bergamini MF. Biochar: An environmentally friendly platform for construction of a SARS-CoV-2 electrochemical immunosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159797. [PMID: 36334678 DOI: 10.1016/j.scitotenv.2022.159797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Waste management is a key feature to ensure sustainable consumption and production patterns, and to combat the impacts of climate change. In this scenario, the production of biochar from different biomasses results in environmental and economic advantages. In this study, biochar was produced from sugarcane bagasse pyrolysis, to immobilize biomolecules, in order to assemble an electrochemical immunosensor to detect antibodies against SARS-CoV-2. For this, screen-printed carbon electrodes (SPCE) were modified with a dispersion of biochar and used to immobilize the receptor-binding-domain (RBD) against virus S-protein, through EDC/NHS crosslinking reaction. Under the best set of experimental conditions, negative and positive serum samples responses distinguished based on a cutoff value of 82.3 %, at a 95 % confidence level. The immunosensor showed selective behavior to antibodies against yellow fever and its performance was stable up to 7 days of storage. Therefore, biochar yielded from sugarcane bagasse is an ecofriendly material that can be used as a platform to immobilize biomolecules for construction of electrochemical biosensors.
Collapse
Affiliation(s)
- Marcia Gabriela Pianaro Valenga
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil
| | - Thomas A C Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil
| | - Lorena Klipe Didek
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil
| | - Ava Gevaerd
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil; Hilab, Rua José Altair Possebom, 800, CEP 81270-185 Curitiba, PR, Brazil
| | - Luiz Humberto Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Electrochemical sensor based on the polyoxometalate nanocluster [(NH4)12[Mo36(NO)4O108(H2O)16]·33H2O and molybdenum disulfide nanocomposite materials for simultaneous detection of dihydroxybenzene isomers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Li Y, Xu R, Wang H, Xu W, Tian L, Huang J, Liang C, Zhang Y. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. BIOSENSORS 2022; 12:bios12060377. [PMID: 35735525 PMCID: PMC9221240 DOI: 10.3390/bios12060377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/17/2023]
Abstract
In the context of accelerating the global realization of carbon peaking and carbon neutralization, biochar produced from biomass feedstock via a pyrolysis process has been more and more focused on by people from various fields. Biochar is a carbon-rich material with good properties that could be used as a carrier, a catalyst, and an absorbent. Such properties have made biochar a good candidate as a base material in the fabrication of electrochemical sensors or biosensors, like carbon nanotube and graphene. However, the study of the applications of biochar in electrochemical sensing technology is just beginning; there are still many challenges to be conquered. In order to better carry out this research, we reviewed almost all of the recent papers published in the past 5 years on biochar-based electrochemical sensors and biosensors. This review is different from the previously published review papers, in which the types of biomass feedstock, the preparation methods, and the characteristics of biochar were mainly discussed. First, the role of biochar in the fabrication of electrochemical sensors and biosensors is summarized. Then, the analytes determined by means of biochar-based electrochemical sensors and biosensors are discussed. Finally, the perspectives and challenges in applying biochar in electrochemical sensors and biosensors are provided.
Collapse
Affiliation(s)
| | - Rui Xu
- Correspondence: (R.X.); (Y.Z.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Qin Y, Hang C, Huang L, Cheng H, Hu J, Li W, Wu J. An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Qi H, Li Q, Jing J, Jing T, Liu C, Qiu L, Sami R, Helal M, Ismail KA, Aljahani AH. Construction of N-CDs and Calcein-Based Ratiometric Fluorescent Sensor for Rapid Detection of Arginine and Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:976. [PMID: 35335790 PMCID: PMC8953410 DOI: 10.3390/nano12060976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
In our study, a unique ratiometric fluorescent sensor for the rapid detection of arginine (Arg) and acetaminophen (AP) was constructed by the integration of blue fluorescent N-CDs and yellowish-green fluorescent calcein. The N-CD/calcein ratiometric fluorescent sensor exhibited dual emission at 435 and 519 nm under the same excitation wavelength of 370 nm, and caused potential Förster resonance energy transfer (FRET) from N-CDs to calcein. When detecting Arg, the blue fluorescence from the N-CDs of the N-CD/calcein sensor was quenched by the interaction of N-CDs and Arg. Then, the fluorescence of our sensor was recovered with the addition of AP, possibly due to the stronger association between AP and Arg, leading to the dissociation of Arg from N-CDs. Meanwhile, we observed an obvious fluorescence change from blue to green, then back to blue, when Arg and AP were added, exhibiting the "on-off-on" pattern. Next, we determined the detection limits of the N-CD/calcein sensor to Arg and AP, which were as low as 0.08 μM and 0.02 μM, respectively. Furthermore, we discovered that the fluorescence changes of the N-CD/calcein sensor were only responsible for Arg and AP. These results suggested its high sensitivity and specificity for Arg and AP detection. In addition, we have successfully achieved its application in bovine serum samples, indicating its practicality. Lastly, the logic gate was generated by the N-CD/calcein sensor and presented its good reversibility. Overall, we have demonstrated that our N-CD/calcein sensor is a powerful sensor to detect Arg and AP and that it has potential applications in biological analysis and imaging.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Qiuying Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of Technology, No.92, West Dazhi Street, Harbin 150000, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Chuntong Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Lixin Qiu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khadiga Ahmed Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
12
|
Srinithi S, Balakumar V, Chen SM. In-situ fabrication of polypyrrole composite with MoO 3: An effective interfacial charge transfers and electrode materials for degradation and determination of acetaminophen. CHEMOSPHERE 2022; 291:132977. [PMID: 34801570 DOI: 10.1016/j.chemosphere.2021.132977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 μM. The limit of detection and sensitivity of electrode were 0.0007 μM and 0.242 μM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.
Collapse
Affiliation(s)
- Subburaj Srinithi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, ROC, Taiwan.
| |
Collapse
|
13
|
Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:111963. [PMID: 34450157 DOI: 10.1016/j.envres.2021.111963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
Collapse
Affiliation(s)
- Surya Sudheer
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia.
| | - Renu Geetha Bai
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Center for Nanotechnology & Advanced Materials, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia.
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
14
|
Han H, Liu C, Sha J, Wang Y, Dong C, Li M, Jiao T. Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 2021; 235:122751. [PMID: 34517619 DOI: 10.1016/j.talanta.2021.122751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/11/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022]
Abstract
Developing a convenient and accurate method for the determination of acetaminophen (APAP) content is very vital, and ferrocene (Fc) based nanocomposites coupled with polyoxometalates (POMs) as electrochemical sensor is a promising approach to address the issues. Herein, a new ternary nanocomposite of Fc based carbon nanomaterials (Fc-rGO) with PMo12 (Fc-rGO/PMo12, rGFP-n) was successfully fabricated, and the electrochemical activities and APAP detection of rGFP-n as electro-active materials were systematically investigated, and results of the differential pulse voltammetry (DPV) and electro-active surface area (0.0332 cm2) show that rGFP-1 is an excellent electrochemical sensor for APAP, and the proportion of Fc in rGFP-n can affect the charge transfer between APAP and rGFP. Under the optimal experimental conditions, rGFP-1 can be used to detect APAP with the limit of detection (LOD) of 13.27 nM (S/N = 3), the sensitivity of 36.81μA⋅μM-1cm-2, and the detection range from 1×10-6 to 1×10-3M, meeting the lowest plasma concentration of APAP (1.3 mM).
Collapse
Affiliation(s)
- Hong Han
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China
| | - Chang Liu
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China; School of Pharmacy, Jiamusi University, HeilongJiang, Jiamusi, 154007, PR China
| | - Jingquan Sha
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China; School of Pharmacy, Jiamusi University, HeilongJiang, Jiamusi, 154007, PR China.
| | - Yu Wang
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China
| | - Chunyao Dong
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China
| | - Mingjun Li
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China
| | - Tiying Jiao
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Shandong, 273155, China
| |
Collapse
|