1
|
Zhao LZ, Cao HL, He ZQ, Sun Y, Fang LL, Li WL. Recent advances in green solvents-based liquid-phase microextraction techniques for chromatographic analysis of active components in traditional Chinese medicine. J Chromatogr A 2024; 1741:465604. [PMID: 39708523 DOI: 10.1016/j.chroma.2024.465604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Traditional Chinese medicine (TCM) is a treasure of China and a crucial part of traditional medicine in the world, particularly in many oriental countries. TCM is the core and basis of traditional medicine in clinical practice for numerous diseases, and performs important function in nutraceuticals and dietary supplements. However, it is extremely difficult to extract each active ingredient from TCM to elucidate the mechanism of TCM clinical efficacy due to numerous compounds in TCM, especially trace compounds. Consequently, liquid-phase microextraction (LPME) techniques, one of the main extraction methods of active ingredients in TCM, have attracted a considerable attention from researchers. In recent years, many novel green solvents based-LPME methods have been reported, such as single-drop microextraction (SDME), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), and electro-membrane extraction (EME). Therefore, in this review, we present an up-to-date and comprehensive summary of various LPME techniques, novel green solvents, and their applications in the analysis of active ingredients within the complex TCM samples. We provide a detailed overview of the fundamental principles, modes, and the critical process parameters of the LPME techniques. In addition, we compare different types of green solvents (i.e., deep eutectic solvents, ionic liquids, magnetic ionic liquids, supramolecular solvents, switchable solvents, among others), and the advantages and disadvantages of these solvents are critically evaluated, highlighting their suitability for various applications. Finally, we elucidate the merits and demerits of different LPME methods, discuss their practical applications, and explore their future research directions. This review aims to provide a valuable resource for researchers and practitioners in the field of TCM, promoting research development and application of the advanced and environmentally friendly sample pretreatment techniques.
Collapse
Affiliation(s)
- Li-Zhu Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Hui-Ling Cao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Zhi-Qiang He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan Sun
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Lin-Lin Fang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Ministry of Education, Shenyang, Liaoning Province, China.
| | - Wen-Lan Li
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Meshcheva D, Krekhova F, Shishov A, Bulatov A. Natural deep eutectic solvent for the simultaneous derivatization and microextraction of isoniazid from human plasma. Anal Chim Acta 2024; 1320:343007. [PMID: 39142784 DOI: 10.1016/j.aca.2024.343007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Personalized medicine is a rapidly revolving field that offers new opportunities for tailoring disease treatment to individual patients. The main idea behind this approach is to carefully select safe and effective medications and treatment plant based on each patient's unique pharmacokinetic profile. Isoniazid is a first-line anti-tuberculosis drug that has interindividual variability in its metabolic processing, leading to significant differences in plasma concentrations among patients receiving equivalent doses. This variability necessitates the creation of individualized treatment regimens as part of personalized medicine to achieve more effective therapy. RESULTS In this work, a deep eutectic solvent-based liquid-liquid microextraction approach for the separation and determination of isoniazid in human plasma by high-performance liquid chromatography with UV-Vis detection was developed for the first time. A new natural deep eutectic solvent based on thymol as a hydrogen bond donor and 4-methoxybenzaldehyde as a hydrogen bond acceptor was proposed as the extraction solvent. The developed microextraction procedure assumed two simultaneous processes during the mixing of the sample and extraction solvent: the derivatization of the polar analyte in the presence of 4-methoxybenzaldehyde (component of the natural deep eutectic solvent) with the formation of a hydrophobic Schiff base (1); mass transfer of the Schiff base from the sample phase to the extraction solvent phase (2). Under optimal conditions, the limits of detection and quantification were 20 and 60 μg L-1, respectively. The RSD value was <10 %, the extraction recovery was 95 %. SIGNIFICANCE In this work, the possibility of isoniazid derivatization in the natural deep eutectic solvent phase with the formation of the Schiff base was presented for the first time. The approach provided the separation and preconcentration of polar isoniazid without the use of expensive derivatization agents and solid-phase extraction cartridges. The formation of the Schiff base was confirmed by mass spectrometry.
Collapse
Affiliation(s)
- Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Świderski G, Gołębiewska E, Kalinowska M, Świsłocka R, Kowalczyk N, Jabłońska-Trypuć A, Lewandowski W. Comparison of Physicochemical, Antioxidant, and Cytotoxic Properties of Caffeic Acid Conjugates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2575. [PMID: 38893840 PMCID: PMC11174028 DOI: 10.3390/ma17112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Spectroscopic studies (FT-IR, Raman, 1H, and 13C NMR, UV-VIS) of caffeic acid (CFA) and its conjugates, i.e., caftaric acid (CTA), cichoric acid (CA), and cynarin (CY), were carried out. The antioxidant activity of these compounds was determined by a superoxide dismutase (SOD) activity assay and the hydroxyl radical (HO•) inhibition assay. The cytotoxicity of these compounds was performed on DLD-1 cell lines. The molecules were theoretically modeled using the B3LYP-6-311++G(d,p) method. Aromaticity indexes (HOMA, I6, BAC, Aj), HOMO and LUMO orbital energies and reactivity descriptors, NBO electron charge distribution, EPS electrostatic potential maps, and theoretical IR and NMR spectra were calculated for the optimized model systems. The structural features of these compounds were discussed in terms of their biological activities.
Collapse
Affiliation(s)
- Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (M.K.); (R.Ś.); (N.K.); (A.J.-T.); (W.L.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Krekhova F, Meshcheva D, Shishov A, Bulatov A. In situ formation of natural deep eutectic solvent on membrane after fat hydrolysis for lindane isomers determination in peanut paste. Talanta 2024; 271:125737. [PMID: 38309113 DOI: 10.1016/j.talanta.2024.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In this work a sample pretreatment approach assumed liquid-liquid microextraction based on the in situ formation of a hydrophobic natural deep eutectic solvent on a hydrophobic membrane impregnated with natural terpenoid was developed. The procedure included alkaline hydrolysis of a food sample containing fat to form fatty acids, which acted as precursors for the in situ formation of the deep eutectic solvent with natural terpenoid. Two processes were observed on the membrane surface: in situ formation of the hydrophobic deep eutectic solvent and liquid-liquid microextraction of the target analytes. After microextraction, the membrane containing the analytes was easily removed from the sample solution. The developed approach was applied to the separation and preconcentration of hydrophobic organochlorine pesticides (ɑ-hexachlorocyclohexane and γ-hexachlorocyclohexane) from a hydrophobic sample matrix (peanut paste), followed by their determination by gas chromatography with electron capture detection. Under optimal conditions, the limits of detection and quantification for both analytes were 0.3 and 1.0 μg kg-1, respectively. The procedure allowed the separation of fat-soluble analytes from a complex sample matrix with a high content of fat. The extraction recoveries were in the range of 93-95 %.
Collapse
Affiliation(s)
- Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Karpitskiy DA, Bessonova EA, Shishov AY, Kartsova LA. Selective extraction of plant bioactive compounds with deep eutectic solvents: Iris sibirica L. as example. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:53-63. [PMID: 37545032 DOI: 10.1002/pca.3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.
Collapse
Affiliation(s)
- Dmitriy A Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena A Bessonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey Yu Shishov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liudmila A Kartsova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Kamal El-Deen A, Abdallah N, Elmansi H, Belal F, Magdy G. Applications of deep eutectic solvents in microextraction and chromatographic separation techniques: Latest developments, challenges, and prospects. Talanta 2023; 265:124813. [PMID: 37321162 DOI: 10.1016/j.talanta.2023.124813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Deep eutectic solvents (DESs) have recently sparked considerable attention in a variety of scientific and technological fields. The unique properties of DESs include biodegradability, easy preparation, low cost, and tuneability, rendering them a new and prospective alternative to hazardous solvents. Analytical chemistry is one of the most appealing fields where DESs proved to be applicable in either sample preparation or chromatographic separation. This review summarizes the new horizons dedicated to the application of DESs in microextraction and chromatographic separation. The utilization of DESs in microextraction, in chromatography as mobile phase additives, and in chromatographic material preparation processes is outlined. The enhancements in chromatographic performance achieved using DESs and any potential explanations deduced from the experimental findings were primarily discussed. An additional brief discussion on DESs preparation, characterization, and properties is addressed in this work. Finally, current challenges and future trends are also presented, supplying evidence for distinct possibilities regarding new research approaches involving DESs. This review can represent a guide and stimulate further research in this field.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Nora Abdallah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Galal Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| |
Collapse
|
8
|
Nia NN, Hadjmohammadi MR. Preparation of Ferrofluid from Adipic Acid Coated Magnetic Nanoparticles and Hydrophobic Deep Eutectic Solvent Used in Dispersive Micro-Solid-Phase Extraction: Application for the Pre-Concentration and Determination of Clozapine in Biological Samples. J Chromatogr Sci 2023; 61:569-578. [PMID: 36461781 DOI: 10.1093/chromsci/bmac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 07/20/2023]
Abstract
The aim of the present study is the preparation of a novel magnetic ferrofluid (FF) based on a hydrophobic deep eutectic solvent (DES), which is used for the extraction of trace quantities of clozapine from biological samples. For this purpose, a highly stable FF was prepared through the combination of adipic acid-coated magnetic nanoparticles (MNPs) plus tetraethylammonium chloride/thymol hDES without an additional stabilizer. These solvents were synthesized by the available and less-toxic materials, which is the appropriate option to support the solvents for the preparation of FF. In this study, a water-immiscible DES acts simultaneously as a carrier and stabilizer for the MNPs. In addition, the strong interactions between clozapine and magnetic FF could increase the extraction efficiency. The fractional factorial design was used for screening the experimental parameters. Then, the effective factors were optimized using the Box-Behnken design. The optimum extraction conditions were the following: pH of the sample solution: 8, the volume of the desorption solvent: 200 μL and desorption time: 5 min. Moreover, the suggested method exhibited low limits of detection in the range of 2.8-3.1 μg L-1. The linear range was 10.0-500.0 μg L-1 for human plasma and urine samples with acceptable recoveries greater than 91.4%. In addition, the proposed method is convenient, sensitive, effective, rapid and environmentally friendly.
Collapse
Affiliation(s)
- Negar Nooraee Nia
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayii Boulevard, 47416-95447 Babolsar, Iran
| | - Mohammad Reza Hadjmohammadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayii Boulevard, 47416-95447 Babolsar, Iran
| |
Collapse
|
9
|
Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, Cheng F, Yang J, Liu Y, Alias H, Duan E. Mechanistic insights into the lignin dissolution behavior in amino acid based deep eutectic solvents. Int J Biol Macromol 2023; 242:124829. [PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
Collapse
Affiliation(s)
- Yuling Zhang
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Hongwei Ren
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Baochai Li
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Applied Chemistry, Hengshui University, Hengshui, Hebei 0530002, China
| | - Syarah Mat Udin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hasmerya Maarof
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Wen Zhou
- The State Grid Hebei Electric Power Company Electric Power Research Institute, Shijiazhuang, Hebei 050021, China
| | - Fengfei Cheng
- Hebei Pollutant Emission Rights Trading Service Center, Shijiazhuang, Hebei 050026, China
| | - Jiaoruo Yang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yize Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Hajar Alias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Erhong Duan
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
10
|
Devi M, Moral R, Thakuria S, Mitra A, Paul S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS OMEGA 2023; 8:9702-9728. [PMID: 36969397 PMCID: PMC10034849 DOI: 10.1021/acsomega.2c07684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) are multicomponent designer solvents that exist as stable liquids over a wide range of temperatures. Over the last two decades, research has been dedicated to developing noncytotoxic, biodegradable, and biocompatible DESs to replace commercially available toxic organic solvents. However, most of the DESs formulated until now are hydrophilic and disintegrate via dissolution on coming in contact with the aqueous phase. To expand the repertoire of DESs as green solvents, hydrophobic DESs (HDESs) were prepared as an alternative. The hydrophobicity is a consequence of the constituents and can be modified according to the nature of the application. Due to their immiscibility, HDESs induce phase segregation in an aqueous solution and thus can be utilized as an extracting medium for a multitude of compounds. Here, we review literature reporting the usage of HDESs for the extraction of various organic compounds and metal ions from aqueous solutions and absorption of gases like CO2. We also discuss the techniques currently employed in the extraction processes. We have delineated the limitations that might reduce the applicability of these solvents and also discussed examples of how DESs behave as reaction media. Our review presents the possibility of HDESs being used as substitutes for conventional organic solvents.
Collapse
Affiliation(s)
| | | | | | | | - Sandip Paul
- . Phone: +91-361-2582321. Fax: +91-361-2582349
| |
Collapse
|
11
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Moema D, Makwakwa T, Gebreyohannes B, Dube S, Nindi M. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Li Y, Luo J, Shan S, Cao Y. High toxicity of amino acid-based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Cabezas R, Zurob E, Gomez B, Merlet G, Plaza A, Araya-Lopez C, Romero J, Olea F, Quijada-Maldonado E, Pino-Soto L, Gonzalez T, Castro-Muñoz R. Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Rene Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, 4090541, Chile
| | - Elsie Zurob
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Belén Gomez
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Gaston Merlet
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, 3812120, Chile
| | - Andrea Plaza
- Centro de Estudios en Alimentos Procesados (CEAP) Conicyt-Programa Regional-R19A100001 GORE Maule, Talca, 3465548, Chile
| | - Claudio Araya-Lopez
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Felipe Olea
- Laboratory of Separation Processes Intensification (SPI), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Separation Processes Intensification (SPI), Department of Chemical Engineering and Bioprocesses, University of Santiago de Chile, Santiago, 9170022, Chile
| | - Luis Pino-Soto
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción, 4070386, Chile
| | - Thais Gonzalez
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Concepción, 4030585, Chile
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233Gdansk, Poland
| |
Collapse
|
15
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Li F, Deng L, Xu Q, Yuan K, Song H. Extractive separation of 1,8-cineole and γ-terpinene with lactic acid-based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bragagnolo FS, Socas-Rodríguez B, Mendiola JA, Cifuentes A, Funari CS, Ibáñez E. Pressurized natural deep eutectic solvents: An alternative approach to agro-soy by-products. Front Nutr 2022; 9:953169. [PMID: 36159477 PMCID: PMC9493435 DOI: 10.3389/fnut.2022.953169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 – molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | | | - Jose A. Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
- *Correspondence: Elena Ibáñez,
| |
Collapse
|
18
|
Determination of aromatic amines in environmental water samples by deep eutectic solvent-based dispersive liquid-liquid microextraction followed by HPLC-UV. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Chen S, Liu J, Yan J, Wang C, Lu D. In-syringe solid phase extraction and in-syringe vortex-assisted solidified floating organic drop microextraction of Sb(III) and Sb(V) in rice wines with determination by graphite furnace atomic absorption spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:499-507. [PMID: 35061579 DOI: 10.1080/19440049.2021.2021301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The current non-chromatographic speciation methods generally involve the conversion of different species by oxidation/reduction reactions, which may cause inherent problems such as contamination risk, time consumption and complex operations. In this work, in-syringe solid phase extraction (IS-SPE) was combined with in-syringe vortex-assisted solidified floating organic drop microextraction (IS-VA-SFODME) for the detection of Sb(V) and Sb(III) in rice wines by graphite furnace atomic absorption spectrometry. Firstly, IS-SPE involved the use of ZnFe2O4 nanotubes as the sorbent for the isolation and enrichment of Sb(V) and removal of the matrix components such as ethanol, pigment, sugars and carbohydrates. Then, IS-VA-SFODME was used for enriching Sb(III) in the original sample solution after IS-SPE. This technique exhibited good anti-interference ability and high enrichment efficiency without tedious pre-oxidation/pre-reduction and centrifugation/filtration operations, which may cause the contamination of samples. Under the selected conditions, the detection limits were 4.5 ng L-1 and 3.2 ng L-1 for Sb(III) and Sb(V) with relative standard deviations of 7.3% and 5.1%, respectively. This procedure was used with satisfactory results for the detection of Sb(III) and Sb(V) in rice wine samples and a certified reference material of water sample. Recoveries of spiked experiments ranged from 91.0 to 107%.
Collapse
Affiliation(s)
- Shizhong Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jinhong Liu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Yan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chunlei Wang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dengbo Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
20
|
Bayatloo MR, Tabani H, Nojavan S, Alexovič M, Ozkan SA. Liquid-Phase Microextraction Approaches for Preconcentration and Analysis of Chiral Compounds: A Review on Current Advances. Crit Rev Anal Chem 2022; 53:1623-1637. [PMID: 35175878 DOI: 10.1080/10408347.2022.2038072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Chirality is a critical issue in pharmaceutics, forensic chemistry, therapeutic drug monitoring, doping control, toxicology, or environmental investigations as enantiomers of a chiral compound can exhibit different activities, i.e., one enantiomer can have the desired effect while the other one can be inactive or even toxic. To monitor enantioselective metabolism or toxicokinetic/toxicodynamic mechanisms in extremely low content in biological or environmental matrices, sample preparation is vital. The present review describes current status of development of liquid-phase microextraction approaches such as hollow fiber liquid-phase microextraction (HF-LPME), electromembrane extraction (EME), dispersive liquid-liquid microextraction (DLLME), and supramolecular solvent-based microextraction (SSME), used for sample preparation of enantiomers/chiral compounds. The advantages and limitations of the above techniques are discussed. Attention is also focused on chiral separation approaches commonly applied to study the stereo-selective metabolism or toxicokinetic/toxicodynamic mechanisms of enantiomers in the biological and environmental samples.
Collapse
Affiliation(s)
- Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
21
|
Lalikoglu M, Aşçı YS, Sırma Tarım B, Yıldız M, Arat R. Hydrophobic deep eutectic solvent effect on acrylic acid separation from aqueous media by using reactive extraction and modeling with response surface methodology. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1993918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Melisa Lalikoglu
- Faculty of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Yavuz Selim Aşçı
- Faculty of Science, Department of Chemistry, Istanbul University, Istanbul, Avcılar, Turkey
| | - Burcu Sırma Tarım
- Faculty of Engineering, Department of Chemical Engineering, Izmir Institute of Technology, İzmir, Urla, Turkey
| | - Mahmut Yıldız
- Faculty of Science, Department of Chemistry, Gebze Technical University, Kocaeli, Gebze, Turkey
| | - Refik Arat
- Sabanci University, Nanotechnology Research and Application Center, Istanbul, Tuzla, Turkey
| |
Collapse
|
22
|
Musarurwa H, Tavengwa NT. Homogenous liquid-liquid micro-extraction of pollutants in complex matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Serna-Vázquez J, Ahmad MZ, Boczkaj G, Castro-Muñoz R. Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources. Molecules 2021; 26:5037. [PMID: 34443623 PMCID: PMC8401793 DOI: 10.3390/molecules26165037] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Phenolic compounds have long been of great importance in the pharmaceutical, food, and cosmetic industries. Unfortunately, conventional extraction procedures have a high cost and are time consuming, and the solvents used can represent a safety risk for operators, consumers, and the environment. Deep eutectic solvents (DESs) are green alternatives for extraction processes, given their low or non-toxicity, biodegradability, and reusability. This review discusses the latest research (in the last two years) employing DESs for phenolic extraction, solvent components, extraction yields, extraction method characteristics, and reviewing the phenolic sources (natural products, by-products, wastes, etc.). This work also analyzes and discusses the most relevant DES-based studies for phenolic extraction from natural sources, their extraction strategies using DESs, their molecular mechanisms, and potential applications.
Collapse
Affiliation(s)
- Julio Serna-Vázquez
- Tecnologico de Monterrey, Campus Ciudad de México, Calle del Puente 222, Ejidos de Huipulco, Ciudad de México 14380, Mexico;
| | - Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
24
|
Automated liquid-liquid microextraction and determination of sulfonamides in urine samples based on Schiff bases formation in natural deep eutectic solvent media. Talanta 2021; 234:122660. [PMID: 34364468 DOI: 10.1016/j.talanta.2021.122660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
In this work, an automated liquid-liquid microextraction procedure for the determination of sulfonamides (sulfamethoxazole, sulfamethazine and sulfapyridine) in urine samples using natural deep eutectic solvent is presented for the first time. The mechanism for extraction of sulfonamides was based on the formation of colored Schiff bases in the presence of vanillin, which acted as a derivatization reagent and precursor of natural deep eutectic solvent (an extractant). In this procedure, thymol was used as both media for Schiff bases formation and as a second precursor of the natural deep eutectic solvent. The formation of the Schiff bases was confirmed by mass spectrometry. A Lab-In-Syringe concept was applied for the automation of the microextraction procedure. The procedure involved mixing the sample and natural deep eutectic solvent into a syringe of a flow system, formation and microextraction of colored Schiff base followed by UV-Vis detection. Under optimal automated conditions the limits of detection, calculated from a blank test based on 3s (sigma) were 0.06, 0.1, and 0.06 mg L-1 for sulfapyridine, sulfamethoxazole and sulfamethazine. The proposed automated procedure permitted the routine determination of one drug (sulfamethoxazole, sulfamethazine or sulfapyridine) in urine samples to be achieved in less than 10 min.
Collapse
|