1
|
Soliman RM, Mostafa NM, Fayez YM, Monir HH, Rostom Y. Green spectrophotometric approaches applied to tertiary mixture for management of common cold and COVID-19 symptoms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125381. [PMID: 39531975 DOI: 10.1016/j.saa.2024.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Recently, cold and cough dosage forms have gained significant attention due to their use in the supportive protocols for managing COVID-19 symptoms. In this study, a pharmaceutical formulation containing Paracetamol (PAR), Guaifenesin (GUA), and Phenylephrine hydrochloride (PHE) was investigated for spectral resolution and quantification using advanced spectrophotometric methods. The spectra of these components were significantly overlapped and present in their combined tablet in a challenging ratio of 250:100:5 for PAR, GUA, and PHE, respectively. The established approaches were employed for the simultaneous determination of these drugs in their pharmaceutical formulation without interference from matrix excipients. The study involved various manipulation steps, allowing each component in the combination to be analyzed by more than one approach. Integrating these methods with smart mathematical techniques, the issue of spectral data overlap was resolved without the need for preliminary separation steps. The developed methods are dual wavelength, first derivative, derivative ratio, ratio difference, constant center coupled with spectrum subtraction, and constant multiplication paired with spectrum subtraction. The proposed methods were linear over the concentration range of 3.0-35.0 μg/mL for GUA and 3.0-30.0 μg/mL for PHE. While the PAR ranges for the first derivative and constant multiplication methods were 2.5-35.0 μg/mL and 2.5-25.0 μg/mL, respectively. Excellent linearity of the suggested methods was demonstrated by the high correlation coefficients (R2), ≥ 0.9998 for all the tested compounds. These methodologies were validated according to ICH guidelines. Validation results demonstrated excellent accuracy, with recovery percentages ranging from 98 to 102 %, and precision, with RSD values less than 2 %. The obtained results were statistically compared with the official ones using F-test, Student's t-test, and one-way ANOVA, revealing no significant differences. The proposed methods are accurate, green, smart, fast, and cost-effective. Their compliance with Green Analytical Chemistry principles was evaluated and compared to a published method using various tools to enable a more holistic evaluation from different perspectives. The promising results revealed that the investigated methods are superior green alternatives for routine analysis of the cited drugs in laboratories with limited resources and without access to expensive instruments.
Collapse
Affiliation(s)
- Rabab M Soliman
- Ministry of Health and Population, Directorate of Health Affairs, Ismailia Health Administration, Ismailia, Egypt.
| | - Nadia M Mostafa
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Yasmin M Fayez
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Hany H Monir
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Yasmin Rostom
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
2
|
Kelíšková P, Matvieiev O, Jiroušková E, Sokolová R, Janíková L, Behúl M, Šelešovská R. Voltammetric and flow amperometric determination of drug guaifenesin in pharmaceutical and biological samples using screen-printed sensor with boron doped diamond electrode. Talanta 2025; 281:126809. [PMID: 39276571 DOI: 10.1016/j.talanta.2024.126809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
New voltammetric and flow amperometric methods for the determination of guaifenesin (GFE) using a perspective screen-printed sensor (SPE) with boron-doped diamond electrode (BDDE) were developed. The electrochemical oxidation of GFE was studied on the surface of the oxygen-terminated BDDE of the sensor. The GFE provided two irreversible anodic signals at a potential of 1.0 and 1.1 V (vs. Ag|AgCl|KCl sat.) in Britton-Robinson buffer (pH 2), which was chosen as the supporting electrolyte for all measurements. First, a voltammetric method based on differential pulse voltammetry was developed and a low detection limit (LOD = 41 nmol L-1), a wide linear dynamic range (LDR = 0.1-155 μmol L-1), and a good recovery in the analysis of model and pharmaceutical samples (RSD <3.0 %) were obtained. In addition, this sensor demonstrated excellent sensitivity and reproducibility in the analysis of biological samples (RSD <3.2 %), where the analysis took place in a drop of serum (50 μL) without pretreatment and additional electrolyte. Subsequently, SP/BDDE was incorporated into a flow-through 3D printed electrochemical cell and a flow injection analysis method with electrochemical detection (FIA-ED) was developed, resulting in excellent analytical parameters (LOD = 86 nmol L-1, LDR = 0.1-50 μmol L-1). Moreover, the mechanism of electrochemical oxidation of GFE was proposed based on calculations of HOMO spatial distribution and spectroelectrochemical measurements focused on IR identification of intermediates and products.
Collapse
Affiliation(s)
- Pavlína Kelíšková
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Oleksandr Matvieiev
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentská 573, 532 10, Pardubice, Czech Republic.
| | - Eliška Jiroušková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Lenka Janíková
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Miroslav Behúl
- Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Electronics and Photonics, Ilkovičova 3, 812 19, Bratislava, Slovak Republic
| | - Renáta Šelešovská
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
3
|
Saleh SS, Samir A, Lotfy HM, Nessim CK. A high-throughput UPLC-MS-MS Bio-analytical method for the analysis of veterinary pharmaceutical residues in Chicken Tissues, Application of efficient-valid-green (EVG) Framework as a Competence Tool. J Chromatogr A 2024; 1724:464901. [PMID: 38669944 DOI: 10.1016/j.chroma.2024.464901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Antibacterial medications are receiving the most attention due to hypersensitivity reactions and the emergence of bacterial mutants resistant to antibiotics. Treating Animals with uncontrolled amounts of antibiotics will extend beyond their lives and affect humans. This study aims to determine the concentration of the residues of sulfadimidine, sulfaquinoxaline, diaveridine, and vitamin K3 in the tissues of poultry (muscles and liver) after treatment with the combined veterinary formulation. A UPLC-MS-MS method was developed using Poroshell 120 ECC18 and a mobile phase composed of acetonitrile and distilled water, containing 0.1 % formic acid, in the ratio of (85:15 v/v) at a flow rate of 0.6 mL/min. Sample extraction solvent was optimized using response surface methodology (RSM) to be acetonitrile: methanol in the ratio (49.8: 50.2 v/v), and the method was validated according to the FDA bioanalytical method validation protocol over the range (50-1000 µg/Kg) for sulfaquinoxaline and (50-750 µg/Kg) for the other 3 drugs. The greenness of the sample preparation and analytical method was assessed by applying Analytical Eco-scale (AES) and AGREE coupled with AGREEprep. The Competence of the study was evaluated via the EVG framework known as Efficiency, validation, and greenness, to achieve a balance point represented by a radar chart. The method was applied to decide the time required for poultry products to be safe for human use after administration of the studied drugs. It was found that, after the administration of the last dose, minimally 7 days are required till the levels of the drugs drop to the maximum residue limit determined by the FDA/WHO in animal tissues.
Collapse
Affiliation(s)
- Sarah S Saleh
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) 11787 6th October City, Egypt.
| | - Ahmed Samir
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) 11787 6th October City, Egypt
| | - Hayam M Lotfy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, 11835 Cairo, Egypt.
| | - Christine K Nessim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 12566, Cairo, Egypt
| |
Collapse
|
4
|
Mendonsa J, Gandhi S, Mahajan A. Quantification of ternary mixture of paracetamol, chlorzoxazone and ibuprofen present in tablet dosage form using ratio subtraction spectrophotometric approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123891. [PMID: 38245970 DOI: 10.1016/j.saa.2024.123891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
A sensitive and selective spectrophotometric approach comprising of successive ratio subtraction was developed for quantification and resolution of spectrum of mixture containing three components without prior separation. Three components, namely paracetamol, chlorzoxazone and ibuprofen were present in tablet dosage form. The linearity studies were carried out by recording zero order spectra and measuring absorbances at 285.0, 282.0 and 220.0 nm for paracetamol, chlorzoxazone and ibuprofen respectively. The drugs exhibited linear response in the concentration range of 6.0-18.0, 3.0-15.0 and 4.0-20.0 µg / mL for paracetamol, chlorzoxazone and ibuprofen respectively. The spectrum of paracetamol was most extended which was subsequently followed by moderately extended spectrum of chlorzoxazone and unextended spectrum of ibuprofen. The ratio spectra were manipulated successfully for quantification of paracetamol, chlorzoxazone, and ibuprofen. The developed method was validated as per ICH guidelines for the parameters of specificity, linearity, precision and accuracy. The percent recoveries for all the three drugs were in the range of 98.0-102.0 % with mean recovery of paracetamol, chlorzoxazone and ibuprofen were 99.72, 99.02 and 100.34 % respectively. Additionally the validity of the method is assured by analyzing marketed formulation.
Collapse
Affiliation(s)
- Jaime Mendonsa
- Goa College of Pharmacy, Department of Pharmaceutical Analysis, 18(th) June Road, Panaji 403001, Goa, India
| | - Santosh Gandhi
- AISSMS College of Pharmacy, Kennedy Road, Pune 411001, Maharashtra, India
| | - Anand Mahajan
- Goa College of Pharmacy, Department of Pharmaceutical Analysis, 18(th) June Road, Panaji 403001, Goa, India.
| |
Collapse
|
5
|
Sharkawi MMZ, Safwat MT, Abdelaleem EA, Abdelwahab NS. Chromatographic analysis of triple cough therapy; bromhexine, guaiafenesin and salbutamol and pharmaceutical impurity: in-silico toxicity profile of drug impurity. BMC Chem 2024; 18:19. [PMID: 38281055 PMCID: PMC10821540 DOI: 10.1186/s13065-024-01122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
Bromhexine (BR), guaiafenesin (GUF) and salbutamol (SAL) are formulated as Ventocough syrup® (with and without sugar), labeled to contain propyl paraben and sodium benzoate as inactive ingredients. They are used to make coughing more productive and easier. A crucial element and a major issue in the pharmaceutical industry is the control of organic related impurities to obtain safe and effective treatment. Guaiacol (GUL) is reported to be GUF related impurity that was proved to be extremely toxic (toxic rating class 5), and its use should be banned. In this work, In-Silico study and ADMET estimation were conducted to predict GUL pharmacokinetic properties and its toxicity profile. Additionally, two chromatographic methods were conducted to analyze the studied components along with GUF impurity in the presence of the labeled dosage form excipients. The In-Silico study assured that GUL has oral rat acute toxicity and it is considered to be skin sensitizer. On the other hand, the developed TLC- densitometeric method depended on using a mobile phase mixture of hexane: methylene chloride: triethylamine (5.0:6.0:0.3, by volume) as a developing system. UV-Scanning was performed immediately at 275 nm for SAL, GUF and GUL, while scanning at 310 nm was used for scanning BR. Linearity was established in the ranges of 0.25-4.0, 0.25-4.0, 0.5-8.0 and 0.1-1.6 µg/band for BR, SAL, GUF and GUL, respectively. In the developed HPLC method, separation was performed on X-Bridge® C18 column (250 × 4.6 mm, 5 μm) using a solvent mixture of 0.05M disodium hydrogen phosphate pH 3 with aqueous phosphoric acid: methanol (containing 0.3%, v/v triethylamine) (40:60, v/v). Detection was done at 225 nm and separation was achieved within 10 min. Linearity was proved in the range of 2-50 µg/mL for the proposed drugs. Validation of the developed methods was done and all the calculated parameters were within the acceptable limits recommended by ICH guidelines. After that, methods were used to examine the potency of the selected marketed dosage forms and concentrations of all drugs were within the acceptable limits. Additionally, complete separation between the studied drugs and the additives were observed. The developed methods can be used during routine quality control analysis of the proposed drugs when the required issues concern on sensitivity, selectivity and analysis time.
Collapse
Affiliation(s)
- Marco M Z Sharkawi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef, 62514, Egypt
| | - Mark T Safwat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Bayad Al Arab, New Beni-Suef City, Beni-Suef, 62764, Egypt
| | - Eglal A Abdelaleem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef, 62514, Egypt
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmed Hegazy St., Beni-Suef, 62514, Egypt.
| |
Collapse
|
6
|
El-Maraghy CM, Saleh SS, Ibrahim MS, El-Naem OA. Green wastewater treatment of repurposed COVID-19 therapy (levofloxacin) using synthesized magnetite pectin nanoparticles, comparison with mesoporous silica nanoparticles. BMC Chem 2023; 17:134. [PMID: 37814299 PMCID: PMC10563343 DOI: 10.1186/s13065-023-01048-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
RATIONALE Antibiotics have been detected worldwide in the aquatic environment. Moreover, certain classes of antibiotics have been repurposed for the management of COVID-19, which increased their use and presence in wastewater. Their occurrence even in low concentrations leads to the development of antibiotic resistance. METHODOLOGY Magnetite pectin nanoparticles (MPNP) were fabricated and compared to an established model of mesoporous silica nanoparticles (MSNP). Our studied adsorbate is levofloxacin, a fluoroquinolone antibiotic, commonly used in managing COVID-19 cases. RESULTS The influence of various factors affecting the adsorption process was studied, such as pH, the type and concentration of the adsorbent, contact time, and drug concentration. The results illustrated that the optimum adsorption capacity for antibiotic clearance from wastewater using MPNP was at pH 4 with a contact time of 4 h; while using MSNP, it was found to be optimum at pH 7 with a contact time of 12 h at concentrations of 10 µg/mL and 16 g/L of the drug and nanoparticles, respectively, showing adsorption percentages of 96.55% and 98.89%. Drug adsorption equilibrium data obeyed the Sips isotherm model. DISCUSSION AND CONCLUSION HPLC assay method was developed and validated. The experimental results revealed that the MPNP was as efficient as MSNP for removing the antibacterial agent. Moreover, MPNP is eco-friendly (a natural by-product of citrus fruit) and more economic as it could be recovered and reused. The procedure was evaluated according to the greenness assessment tools: AGREE calculator and Hexagon-CALIFICAMET, showing good green scores, ensuring the process's eco-friendliness.
Collapse
Affiliation(s)
- Christine M El-Maraghy
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Egypt
| | - Sarah S Saleh
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Egypt.
| | - Mervat S Ibrahim
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Egypt
| | - Omnia A El-Naem
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Egypt
| |
Collapse
|
7
|
Sun Z, Li M, Qian S, Gu Y, Huang J, Li J. Development of a detection method for 10 non-steroidal anti-inflammatory drugs residues in four swine tissues by ultra-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123722. [PMID: 37099884 DOI: 10.1016/j.jchromb.2023.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
The ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) detection method was developed for the residues of 10 NSAIDs (salicylic acid, acetylsalicylic acid, acetaminophen, diclofenac, tolfenamic acid, antipyrine, flunixin meglumine, aminophenazone, meloxicam, metamizole sodium) in swine muscle, liver, kidney, and fat. Swine tissue samples were extracted by phosphorylated acetonitrile with the addition of an appropriate amount of internal standard working solution, defatted with acetonitrile-saturated n-hexane, and purified by Hydrophile-Lipophile Balance (HLB) solid-phase extraction column, then separated by UPLC BEH shield RP18 column with 0.1% formic acid in water/0.1% formic acid in acetonitrile with gradient elution, which was detected in the multiple reaction monitoring (MRM) modes. The correlation coefficient of the standard curve equation is greater than 0.99, and the coefficient of variation within and between batches is less than 14.4%. We evaluated the analytical method using two green assessment tools. The method established in this study met the requirements of NSAID residue analysis and provides analytical tools for determining and confirming NSAIDs in swine tissue samples. This is the first report on the simultaneous determination of 10 NSAIDs in four swine tissues by the UPLC-MS/MS method and accurate quantification using deuterated internal standards.
Collapse
Affiliation(s)
- Zhixuan Sun
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Miao Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixuan Qian
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yani Gu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingjie Huang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiancheng Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Development and Validation of a Novel Tool for Assessing the Environmental Impact of 3D Printing Technologies: A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14050933. [PMID: 35631519 PMCID: PMC9146618 DOI: 10.3390/pharmaceutics14050933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Technological advancements have created infinite opportunities and rendered our life easier at several fronts. Nonetheless, the environment has suffered the aftermaths of modernization. Ironically, the pharmaceutical industry was found to be a significant contributor to environmental deterioration. To tackle this issue, continuous eco-evaluation of newly introduced technologies is crucial. Three-dimensional printing (3DP) is rapidly establishing its routes in different industries. Interestingly, 3DP is revolutionising the production of pharmaceuticals and is regarded as a promising approach for the fabrication of patient-centric formulations. Despite the increasing applications in the pharmaceutical field, tools that evaluate the environmental impacts of 3DP are lacking. Energy and solvent consumption, waste generation, and disposal are the main associated factors that present major concerns. For the first time, we are proposing a quantitative tool, the index of Greenness Assessment of Printed Pharmaceuticals (iGAPP), that evaluates the greenness of the different 3DP technologies used in the pharmaceutical industry. The tool provides a colour-coded pictogram and a numerical score indicating the overall greenness of the employed printing method. Validation was performed by constructing the greenness profile of selected formulations produced using the different 3DP techniques. This tool is simple to use and indicates the greenness level of the procedures involved, thereby creating an opportunity to modify the processes for more sustainable practices.
Collapse
|
10
|
Riedl C, Siebenhofer M, Nenning A, Friedbacher G, Weiss M, Rameshan C, Bernardi J, Limbeck A, Kubicek M, Opitz AK, Fleig J. Performance modulation through selective, homogenous surface doping of lanthanum strontium ferrite electrodes revealed by in situ PLD impedance measurements. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:2973-2986. [PMID: 35223041 PMCID: PMC8823903 DOI: 10.1039/d1ta08634k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Accelerating the oxygen reduction kinetics of solid oxide fuel cell (SOFC) cathodes is crucial to improve their efficiency and thus to provide the basis for an economically feasible application of intermediate temperature SOFCs. In this work, minor amounts of Pt were doped into lanthanum strontium ferrite (LSF) thin film electrodes to modulate the material's oxygen exchange performance. Surprisingly, Pt was found to be incorporated on the B-site of the perovskite electrode as non metallic Pt4+. The polarization resistance of LSF thin film electrodes with and without additional Pt surface doping was compared directly after film growth employing in situ electrochemical impedance spectroscopy inside a PLD chamber (i-PLD). This technique enables observation of the polarization resistance of pristine electrodes unaltered by degradation or any external contamination of the electrode surface. Moreover, growth of multi-layers of materials with different compositions on the very same single crystalline electrolyte substrate combined with in situ impedance measurements allow excellent comparability of different materials. Even a 5 nm layer of Pt doped LSF (1.5 at% Pt), i.e. a Pt loading of 80 ng cm-2, improved the polarization resistance by a factor of about 2.5. In addition, p(O2) and temperature dependent impedance measurements on both pure and Pt doped LSF were performed in situ and obtained similar activation energies and p(O2) dependence of the polarization resistance, which allow us to make far reaching mechanistic conclusions indicating that Pt4+ introduces additional active sites.
Collapse
Affiliation(s)
- Christoph Riedl
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Matthäus Siebenhofer
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
- CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH TFZ - Wiener Neustadt Viktor-Kaplan-Strasse 2 2700 Wiener Neustadt Austria
| | - Andreas Nenning
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Maximilian Weiss
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Christoph Rameshan
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9-E165-PC 1060 Vienna Austria
| | - Johannes Bernardi
- USTEM Universitäre Service-Einrichtung für Transmissions-Elektronenmikroskopie, TU Wien Wiedner Hauptstrasse. 8-10 1040 Wien Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Markus Kubicek
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Alexander Karl Opitz
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| | - Juergen Fleig
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9-E164 1060 Vienna Austria
| |
Collapse
|