1
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
2
|
Sridharan G, Atchudan R, Magesh V, Arya S, Ganapathy D, Nallaswamy D, Sundramoorthy AK. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202300093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 01/03/2025]
Abstract
AbstractHerein, we have highlighted the latest developments on biosensors for cancer cell detection. Electrochemical (EC) biosensors offer several advantages such as high sensitivity, selectivity, rapid analysis, portability, low‐cost, etc. Generally, biosensors could be classified into other basic categories such as immunosensors, aptasensors, cytosensors, electrochemiluminescence (ECL), and photo‐electrochemical (PEC) sensors. The significance of the EC biosensors is that they could detect several biomolecules in human body including cholesterol, glucose, lactate, uric acid, DNA, blood ketones, hemoglobin, and others. Recently, various EC biosensors have been developed by using electrocatalytic materials such as silver sulfide (Ag2S), black phosphene (BPene), hexagonal carbon nitrogen tube (HCNT), carbon dots (CDs)/cobalt oxy‐hydroxide (CoOOH), cuprous oxide (Cu2O), polymer dots (PDs), manganese oxide (MnO2), graphene derivatives, and gold nanoparticles (Au‐NPs). In some cases, these newly developed biosensors could be able to detect cancer cells with a limit of detection (LOD) of 1 cell/mL. In addition, many remaining challenges have to be addressed and validated by testing more real samples and confirm that these EC biosensors are more accurate and reliable to measure cancer cells in the blood and salivary samples.
Collapse
Affiliation(s)
- Gokul Sridharan
- Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India
| | - Raji Atchudan
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Korea
| | - Vasanth Magesh
- Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India
| | - Sandeep Arya
- Department of Physics University of Jammu Jammu, And Kashmir 180006 Jammu India
| | - Dhanraj Ganapathy
- Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India
| | - Deepak Nallaswamy
- Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India
| | - Ashok K. Sundramoorthy
- Centre for Nano-Biosensors Department of Prosthodontics Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road Velappanchavadi, Chennai 600077, Tamil Nadu India
| |
Collapse
|
3
|
Pourasl MH, Vahedi A, Tajalli H, Khalilzadeh B, Bayat F. Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Sci Rep 2023; 13:6847. [PMID: 37100835 PMCID: PMC10133346 DOI: 10.1038/s41598-023-31668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface. To enhance the binding efficacy of more HER-2 antibody (Ab) on LC aligning agents, a simple ultraviolet radiation-assisted method was also used to increase functional groups on the DMOAP coated slides, thereby improving binding affinity and efficiency onto HER-2 Abs. The designed biosensor makes use of the specific binding of HER-2 protein to HER-2 Ab and disruption of the orientation of LCs. This orientation change leads to a transition of the optical appearance from dark to birefringent, enabling the detection of HER-2. This novel biosensor exhibits a linear optical response to HER-2 concentration in the wide dynamic range of 10-6-102 ng/mL, with an ultra-low detection limit of 1 fg/mL. As a proof of concept, the designed LC biosensor was successfully investigated for the quantification of HER-2 protein in patients suffering from BC. Owing to the sensitivity, selectivity, and label-free detection, this biosensor may amplify the application of LC-based biosensors for the detection of most types of cancers.
Collapse
Affiliation(s)
- Mehri H Pourasl
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Vahedi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Habib Tajalli
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Farzaneh Bayat
- Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
Feng S, Hu W, Pei F, Liu Z, Du B, Mu X, Liu B, Hao Q, Lei W, Tong Z. A Highly Sensitive Fluorescence and Screen-Printed Electrodes—Electrochemiluminescence Immunosensor for Ricin Detection Based on CdSe/ZnS QDs with Dual Signal. Toxins (Basel) 2022; 14:toxins14100710. [PMID: 36287978 PMCID: PMC9608998 DOI: 10.3390/toxins14100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence (ECL) detection of ricin was established, which was combined with a streptavidin–biotin signal amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum experimental conditions, the dual signal intensity increased significantly with the rise in ricin concentration. The fluorescence intensity of the senor exhibited a good liner relationship toward the ricin concentrations with 0.1~100 ng/mL and the limit of detection (LOD) was 81.7 pg/mL; taking ECL as the detection signal, the sensor showed a linear relationship with the ricin concentrations ranging from 0.01 ng/mL to 100 ng/mL and the LOD was 5.5 pg/mL. The constructed sensor with high sensitivity had been successfully applied to the detection of ricin in complex matrices with satisfactory recoveries. The proposed immunosensor model can be extended to the analysis and detection of others target proteins.
Collapse
Affiliation(s)
- Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (W.L.); (Z.T.)
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (W.L.); (Z.T.)
| |
Collapse
|
5
|
Chen Y, Yin P, Peng Z, Lin Q, Duan Y, Fan Q, Wei Z. High-Throughput Recognition of Tumor Cells Using Label-Free Elemental Characteristics Based on Interpretable Deep Learning. Anal Chem 2022; 94:3158-3164. [PMID: 35129946 DOI: 10.1021/acs.analchem.1c04553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With cancer seriously hampering the increasing life expectancy of people, developing an instant diagnostic method has become an urgent objective. In this work, we developed a label-free laser-induced breakdown spectroscopy (LIBS) method for high-throughput recognition of tumor cells. LIBS spectra were straightly collected from cells dropped on a silicon substrate and built into a deep learning model for simultaneous classification of various cancers. To interpret the result of the deep learning algorithm, gradient-weighted class activation mapping was utilized to a one-dimensional convolution neural network (1D-CNN), and the saliency maps thus obtained amplified the differences between the spectra of cell lines. Overall results showed that the 1D-CNN algorithms achieved a mean sensitivity of 94.00%, a mean specificity of 98.47%, and a mean accuracy of 97.56%. Thus, the proposed method performed satisfactorily and is seen as an interpretable classification process for cancer cell lines.
Collapse
Affiliation(s)
- Youyuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Pengkun Yin
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Zhengying Peng
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qingwen Fan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analysis and Testing Center, Sichuan University, Chengdu 610064, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Chen W, Li Z, Cheng W, Wu T, Li J, Li X, Liu L, Bai H, Ding S, Li X, Yu X. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J Nanobiotechnology 2021; 19:450. [PMID: 34952586 PMCID: PMC8709980 DOI: 10.1186/s12951-021-01210-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive exosomes play an extremely important role in the diagnosis and treatment options of breast cancers. Herein, based on the reformative tyramine signal amplification (TSA) enabled by molecular aptamer beacon (MAB) conversion, a label-free surface plasmon resonance (SPR) biosensor was proposed for highly sensitive and specific detection of HER2-positive exosomes. The exosomes were captured by the HER2 aptamer region of MAB immobilized on the chip surface, which enabled the exposure of the G-quadruplex DNA (G4 DNA) that could form peroxidase-like G4-hemin. In turn, the formed G4-hemin catalyzed the deposition of plentiful tyramine-coated gold nanoparticles (AuNPs-Ty) on the exosome membrane with the help of H2O2, generating a significantly enhanced SPR signal. In the reformative TSA system, the horseradish peroxidase (HRP) as a major component was replaced with nonenzymic G4-hemin, bypassing the defects of natural enzymes. Moreover, the dual-recognition of the surface proteins and lipid membrane of the desired exosomes endowed the sensing strategy with high specificity without the interruption of free proteins. As a result, this developed SPR biosensor exhibited a wide linear range from 1.0 × 104 to 1.0 × 107 particles/mL. Importantly, this strategy was able to accurately distinguish HER2-positive breast cancer patients from healthy individuals, exhibiting great potential clinical application. ![]()
Collapse
Affiliation(s)
- Wenqin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Wu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Liu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China.
| |
Collapse
|
7
|
Li N, Shi L, Zou X, Wang T, Wang D, Gong Z, Fan M. Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchem J 2021; 173:107046. [PMID: 34866656 PMCID: PMC8632743 DOI: 10.1016/j.microc.2021.107046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has dramatically changed the world, is a highly contagious virus. The timely and accurate diagnosis of SARS-CoV-2 infections is vital for disease control and prevention. Here in this work, a fluorescence immunoassay was developed to detect 2019 Novel Coronavirus antibodies (2019-nCoV mAb). Fluorescent graphene quantum dots (GQDs) and Ag@Au nanoparticles (Ag@AuNPs) were successfully synthesized and characterized. Fluorescence resonance energy transfer (FRET) enables effective quenching of GQDs fluorescence by Ag@AuNPs. With the presence of 2019-nCoV mAb, a steric hindrance was observed between the Ag@AuNPs-NCP (2019-nCoV antigen) complex and GQDs, which reduced the FRET efficiency and restored the fluorescence of GQDs. The fluorescence enhancement efficiency has a satisfactory linear relationship with the logarithm of the 2019-nCoV mAb in a concentration range of 0.1 pg mL−1–10 ng mL−1, and the limit of detection was 50 fg mL−1. The method has good selectivity. When the serum sample was spiked with 2019-nCoV mAb, the recovery rate was between 90.8% and 103.3%. The fluorescence immunosensor demonstrates the potential to complement the existing serological assays for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Nan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| |
Collapse
|