1
|
Jayasudha P, Manivannan R, Kim W, Son YA. An affordable, field-deployable detecting system for cyanide ion - Investigating applications in real time uses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124946. [PMID: 39208543 DOI: 10.1016/j.saa.2024.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
A highly efficient system that incorporates the instantaneous visualization of the cyanide ion in water was synthesized by keeping the fluorophore system (electron donor) as a julolidine-coumarin conjugate and changing the electron acceptor unit. The probes exhibit a notable color change in normal and UV light. The probe interaction modalities are based on the ICT process. With a detection limit in the nM range, it may preferentially react with cyanide, which is less than the tolerable level of 1.9 μM. According to 1H NMR data, the probes detect cyanide ions by nucleophilic addition reaction mechanism. Furthermore, current probe successfully determines real resources, including cyanide containing cassava powder, sprouted potatoes and various water samples. Besides the test strips, an electronic Arduino device was also employed to detect the cyanide ion. As such, the developed probes exhibit outstanding practical application with respect to the cyanide ion.
Collapse
Affiliation(s)
- Palanisamy Jayasudha
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Wonbin Kim
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
2
|
Sert A, Erdemir S, Malkondu S. Ratiometric detection and monitoring of cyanide in biological, environmental and food samples by a novel triphenylamine-xhantane based fluorescent probe. Anal Chim Acta 2024; 1320:343000. [PMID: 39142780 DOI: 10.1016/j.aca.2024.343000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As cyanide (CN-) is a significant hazard to the environment and human health, it is essential to monitor cyanide levels in water and food samples. Moreover, real-time visualization of CN-could provide an additional understanding of its critical physiological and toxicological roles in living cells. The fluorescence approach based on small organic probes is an effective way for the detection of CN-. In this approach, a triphenylamine-xhantane conjugate was applied to detect in many samples such as sewage water, soil, sprouted potato, apricot seed, and living cells. RESULTS We report a new ratiometric near-infrared fluorescent probe based on a triphenylamine-xhantane derivative for CN-sensing in many samples. The probe displays high selectivity for only CN- ions among a series of analytes. The addition of cyanide to the dicyanovinyl moiety of the probe disrupts π-conjugation followed by the interruption of internal charge transfer. Consequently, the emission peak of the probe shifts hypsochromically from 655 to 495 nm. There is a linear correlation between the emission intensity (I495) and cyanide level, with a detection limit of 0.036 μM. The probe has many advantages over many probes, such as NIR fluorescence, ratiometric response, low cytotoxicity (85.0 % cell viability up to 50.0 μM of the probe), good membrane permeability, fast response time (4.0 min), high selectivity, good photostability, and anti-interference capability. SIGNIFICANCE Although various probes have been reported in the literature, the use of triphenylamine-xhantane unit as CN- probe has yet to be explored. The probe can detect trace levels of cyanide in many samples such as sewage water, soil, sprouted potatoes, and apricot seeds. Furthermore, it is successfully utilized for the ratiometric fluorescent bioimaging of cyanide in living cells.
Collapse
Affiliation(s)
- Ali Sert
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
3
|
Kalavathi A, Satheeshkumar K, Dharaniprabha V, Vennila KN, Elango KP. Spectroscopic and Theoretical Studies on the Selective Detection of Cyanide Ions by a Turn-On Fluorescent Chemo-Dosimeter and its Application in Living Cell Imaging. J Fluoresc 2023:10.1007/s10895-023-03509-4. [PMID: 38008863 DOI: 10.1007/s10895-023-03509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
A new chemo-dosimeter AK4 containing quinoline fluorophore has rationally been designed, synthesised and characterized using 1H and 13C NMR and mass spectral techniques. The probe senses explicitly CN- ion through a dramatic enhancement in fluorescence over other commonly coexistent anions in H2O:DMSO (9:1 v/v) medium over a broad pH range (4-10). 1H NMR titration revealed the deprotonation followed by nucleophilic addition reaction of CN-, which was supported by 13C NMR and mass spectral examinations. The Job's continuous variation method indicated the formation of a 1:1 adduct between AK4 and CN- with a binding constant of 1.62 × 104 M-1. A limit of detection (LOD) towards CN- of 0.69 µM has been determined, which is much lower than the World Health Organization (WHO) recommended limit of CN- in drinking water (1.9 µM). The changes in the optical properties of AK4 upon reaction with CN- were delineated using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) calculations. Moreover, fluorescence microscopic studies established that AK4 could be an effective probe for imaging intracellular CN- in HeLa cells.
Collapse
Affiliation(s)
- A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - V Dharaniprabha
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India.
| |
Collapse
|
4
|
Kalavathi A, Satheeshkumar K, Dharaniprabha V, Vennila KN, Elango KP. Multi-Spectroscopic and TD-DFT Studies on Chromogenic and Fluorogenic Detection of Cyanide in an Aqueous Solution. J Fluoresc 2023:10.1007/s10895-023-03473-z. [PMID: 37889454 DOI: 10.1007/s10895-023-03473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Different spectroscopic techniques and Density Functional Theory (DFT)/Time-Dependent Density Functional Theory (TDDFT) calculations have been employed to investigate the dual channel CN- detection behaviour of the developed chemo-dosimeter (AK3). The CN- with AK3 reaction triggered a colour change from pale yellow to colourless and enhanced fluorescence. UV-Vis, fluorescence, 1H & 13C NMR and mass techniques coupled with theoretical calculations (Mulliken charges, dihedral angles) revealed that the CN- sensing process mechanism involves deprotonation of the N-H group followed by nucleophilic addition reaction. Detailed TD-DFT calculations showed that the relaxation of excited electrons from LUMO and to two different ground states is responsible for the weak/moderate fluorescence of AK3. Nucleophilic addition of CN- to the C-atom of the CH = CH bridge terminated the π-conjugation between donor and acceptor regions, reduced the coplanarity, decreased the ICT transition and consequently enhanced the fluorescence of the probe. The practical utility of the probe was demonstrated by detecting cyanide in food materials and determining CN- in environmental water samples.
Collapse
Affiliation(s)
- A Kalavathi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - K Satheeshkumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - V Dharaniprabha
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624302, India.
| |
Collapse
|
5
|
Saremi M, Kakanejadifard A, Ghasemian M, Adeli M. A colorimetric and turn-on fluorescent sensor for cyanide and acetate-based Schiff base compound of 2,2'-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl)bis(4-((E)-phenyldiazenyl)phenol). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122397. [PMID: 36716605 DOI: 10.1016/j.saa.2023.122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A novel Schiff base-based sensor (L) has been designed, synthesized, and developed as a fluorescent and colorimetric sensor for cyanide and acetate. This L exhibited a quick response with rapid sensitivity to CN- and AcO- through a remarkable color change from yellow to red which was detectable by the naked eyes. It also sensed CN- and AcO- in a fluorescent way via an enhancement in fluorescence intensity. The interaction between L and anions (CN- and AcO-) was investigated by using UV-Vis studies, and 1H NMR titration. The theoretical DFT calculations were also employed to support the results, which displayed good agreement with the experimental value acquisition. As the detection limit for cyanide and acetate were 2.1 × 10-9 M and 1.7 × 10-9 M; respectively, low concentrations of these anions could be detectable in the proposed L sensor. In addition, L showed significant reversibility of CN- detection by using Cu2+ as a proper reagent with two different sensing methods including color change and UV-Vis. Last but not least, L could be applied to rapidly detect CN- in a wide range of pH. As a result, the proposed sensor is promising to identify cyanide and acetate in practical applications in medical, biological, and chemical fields.
Collapse
Affiliation(s)
- Masoumeh Saremi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Ali Kakanejadifard
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Motaleb Ghasemian
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
6
|
Battison A, Schoeman S, Mama N. A Coumarin-azo Derived Colorimetric Chemosensor for Hg 2+ Detection in Organic and Aqueous Media and its Extended Real-world Applications. J Fluoresc 2023; 33:267-285. [PMID: 36413253 DOI: 10.1007/s10895-022-03065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Pollution caused by the release of toxic heavy metals into the environment by industrial and farming processes has been regarded as a major problem worldwide. This has attracted a great deal of attention into restoration and remediation. Mercury is classified as a toxic heavy metal which has posed significant challenges to public and environmental health. To date, conventional methods for mercury detection rely on expensive, destructive, complex, and highly specialized methods. Evidently, there is a need to develop systems capable of easily identifying and quantifying mercury within the environment. In this way, organic-based colorimetric chemosensors are gaining increasing popularity due to their high sensitivity, selectivity, cost-effectiveness, ease of design, naked-eye, and on-site detection ability. The formation of coumarin-azo derivative AD1 was carried out by a conventional diazotization reaction with coumarin-amine 1c and N,N-dimethylaniline. Sensor AD1 displayed remarkable visual colour change upon mercury addition with appreciable selectivity and sensitivity. The detection limit was calculated as 0.24 µM. Additionally, the reversible nature of AD1 allowed for the construction of an IMPLICATION type logic gate and Molecular Keypad Lock. Chemosensor AD1 displayed further sensing applications in real-world water samples and towards on-site assay methods. Herein, we describe a coumarin-derived chemosensor bearing an azo (N = N) functionality for the colorimetric and quantitative determination of Hg2+ in organic and aqueous media.
Collapse
Affiliation(s)
- Aidan Battison
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Stiaan Schoeman
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Neliswa Mama
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa.
| |
Collapse
|
7
|
Selective colorimetric detection of Cyanide from Agro products and blood plasma by a bio-active Cu(II) complex of azophenine derivative: A potential tool for autopsy investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
A highly selective colorimetric sensing of CN– ion by a hydrazine appended Schiff base and its application in detection of CN– ion present in tobacco and food samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Visual detection of F− and CN− using a novel phenylthiosemicarbazide-based chemosensor and its application in real samples. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Jothi D, Munusamy S, Manoj Kumar S, Enbanathan S, Kulathu Iyer S. A benzothiazole-based new fluorogenic chemosensor for the detection of CN - and its real-time application in environmental water samples and living cells. RSC Adv 2022; 12:8570-8577. [PMID: 35424806 PMCID: PMC8984840 DOI: 10.1039/d1ra08846g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the cyanide ion is used in a wide range of industries and is harmful to both human health and the environment, a number of research efforts are dedicated to creating fluorescence sensors for the detection of cyanide (CN-). Herein, for the fluorescence detection of CN-, a new highly selective and sensitive sensor 2-(3-(benzo[d]thiazol-2-yl)-4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (BID) was created by conjugating a benzothiazole moiety with 1H-indene-1,3(2H)-dione. The donor and acceptor components of this hybrid receptor were covalently connected through a double bond. The nucleophilic addition of a cyanide anion to the BID inhibits the intramolecular charge transfer (ICT) transition, resulting in spectral and colour alterations in the receptor. When the solvent polarity was increased from n-hexane to methanol, this molecule exhibited a bathochromic shift in the emission wavelength (610 to 632 nm), suggesting the presence of a solvatochromic action. The sensor BID has shown strong specificity towards CN- by interrupting its internal charge transfer (ICT), resulting in a significant change in the UV-vis spectrum and a notable blue shift in the fluorescence emission spectrum. The cyanide anion (CN-) is responsible for the optical alterations observed by BID, as opposed to the other anions examined. The detection limit was 5.97 nM, significantly less than the WHO's permitted amount of CN- in drinking water. The experimental findings indicate that BID's fluorescence response to CN- is pH insensitive throughout a wide pH range of 6.0 to 12.0. The interaction mechanism between the BID and CN- ions has been studied by HRMS, 1H-NMR titration experiments, FT-IR, and DFT, which confirmed the nucleophilic addition of CN- on vinylidene and subsequent disturbance of ICT. Additionally, we demonstrated the real-time detection application of CN- in environmental water samples and live-cell imaging.
Collapse
Affiliation(s)
- Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|
11
|
Shahid M, Chawla HM. Hydrogen bond and nucleophilicity motifs in the design of molecular probes for CN− and F− ions. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|