1
|
Lemos AA, Chapana AL, Lujan CE, Botella MB, Oviedo MN, Wuilloud RG. Eco-friendly solvents in liquid-liquid microextraction techniques for biological and environmental analysis: a critical review. Anal Bioanal Chem 2024:10.1007/s00216-024-05578-1. [PMID: 39392506 DOI: 10.1007/s00216-024-05578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In recent years, green solvents have emerged as promising alternatives in the field of analytical chemistry, replacing conventional organic solvents known for their toxicity, volatility, and flammability. The combination of these solvents with liquid-liquid microextraction techniques has facilitated the development of simpler, faster, more economical, and environment-friendly methodologies for the analysis of samples of varying complexity. This review discusses the fundamental physicochemical properties and advantages of using deep eutectic solvents, ionic liquids, switchable-hydrophilicity solvents, supramolecular solvents, and surfactants as extractants. Furthermore, analytical methods based on liquid-liquid microextraction techniques developed in the last 5 years for the determination of organic compounds and metals in biological and environmental samples are presented and discussed, highlighting their applications and benefits to improve analytical performance and sustainability.
Collapse
Affiliation(s)
- Aldana A Lemos
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Agostina L Chapana
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Cecilia E Lujan
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María B Botella
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María N Oviedo
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina.
| |
Collapse
|
2
|
Krekhova F, Meshcheva D, Shishov A, Bulatov A. In situ formation of natural deep eutectic solvent on membrane after fat hydrolysis for lindane isomers determination in peanut paste. Talanta 2024; 271:125737. [PMID: 38309113 DOI: 10.1016/j.talanta.2024.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In this work a sample pretreatment approach assumed liquid-liquid microextraction based on the in situ formation of a hydrophobic natural deep eutectic solvent on a hydrophobic membrane impregnated with natural terpenoid was developed. The procedure included alkaline hydrolysis of a food sample containing fat to form fatty acids, which acted as precursors for the in situ formation of the deep eutectic solvent with natural terpenoid. Two processes were observed on the membrane surface: in situ formation of the hydrophobic deep eutectic solvent and liquid-liquid microextraction of the target analytes. After microextraction, the membrane containing the analytes was easily removed from the sample solution. The developed approach was applied to the separation and preconcentration of hydrophobic organochlorine pesticides (ɑ-hexachlorocyclohexane and γ-hexachlorocyclohexane) from a hydrophobic sample matrix (peanut paste), followed by their determination by gas chromatography with electron capture detection. Under optimal conditions, the limits of detection and quantification for both analytes were 0.3 and 1.0 μg kg-1, respectively. The procedure allowed the separation of fat-soluble analytes from a complex sample matrix with a high content of fat. The extraction recoveries were in the range of 93-95 %.
Collapse
Affiliation(s)
- Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Karpitskiy DA, Bessonova EA, Shishov AY, Kartsova LA. Selective extraction of plant bioactive compounds with deep eutectic solvents: Iris sibirica L. as example. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:53-63. [PMID: 37545032 DOI: 10.1002/pca.3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.
Collapse
Affiliation(s)
- Dmitriy A Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena A Bessonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey Yu Shishov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liudmila A Kartsova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
4
|
AlYammahi J, Darwish AS, Lemaoui T, Boublia A, Benguerba Y, AlNashef IM, Banat F. Molecular Guide for Selecting Green Deep Eutectic Solvents with High Monosaccharide Solubility for Food Applications. ACS OMEGA 2023; 8:26533-26547. [PMID: 37521623 PMCID: PMC10373463 DOI: 10.1021/acsomega.3c03326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Monosaccharides play a vital role in the human diet due to their interesting biological activity and functional properties. Conventionally, sugars are extracted using volatile organic solvents (VOCs). Deep eutectic solvents (DESs) have recently emerged as a new green alternative to VOCs. Nonetheless, the selection criterion of an appropriate DES for a specific application is a very difficult task due to the designer nature of these solvents and the theoretically infinite number of combinations of their constituents and compositions. This paper presents a framework for screening a large number of DES constituents for monosaccharide extraction application using COSMO-RS. The framework employs the activity coefficients at infinite dilution (γi∞) as a measure of glucose and fructose solubility. Moreover, the toxicity analysis of the constituents is considered to ensure that selected constituents are safe to work with. Finally, the obtained viscosity predictions were used to select DESs that are not transport-limited. To provide more insights into which functional groups are responsible for more effective monosaccharide extraction, a structure-solubility analysis was carried out. Based on an analysis of 212 DES constituents, the top-performing hydrogen bond acceptors were found to be carnitine, betaine, and choline chloride, while the top-performing hydrogen bond donors were oxalic acid, ethanolamine, and citric acid. A research initiative was presented in this paper to develop robust computational frameworks for selecting optimal DESs for a given application to develop an effective DES design strategy that can aid in the development of novel processes using DESs.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmad S. Darwish
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Tarek Lemaoui
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Département
de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| | - Inas M. AlNashef
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Lab-in-syringe automated protein precipitation and salting-out homogenous liquid-liquid extraction coupled online to UHPLC-MS/MS for the determination of beta-blockers in serum. Anal Chim Acta 2023; 1251:340966. [PMID: 36925276 DOI: 10.1016/j.aca.2023.340966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
A sample preparation method involving tandem implementation of protein precipitation and salting-out homogenous liquid-liquid extraction was developed for the determination of beta-blockers in serum. The entire procedure was automated using a computer-controlled syringe pump following the Lab-In-Syringe approach. It is based on the denaturation of serum proteins with acetonitrile followed by salt-induced phase separation upon which the proteins accumulate as a compact layer at the interphase of the solutions. The extract is then separated and diluted in-syringe before being submitted to online coupled UHPLC-MS/MS. A 1 mL glass syringe containing a small stir bar for solution mixing at up to 3000 rpm, was used to deal with sample volumes as small as 100 μL. A sample throughput of 7 h-1 was achieved by performing the chromatographic run and sample preparation procedure in parallel. Linear working ranges were obtained for all analytes between 5 and 100 ng mL-1, with LOD values ranging from 0.4 to 1.5 ng mL-1. Accuracy values in the range of 88.2-106% and high precision of <11% RSD suggest applicability for routine analysis that can be further improved using deuterated standards.
Collapse
|
6
|
Marie AA, Hammad SF, Salim MM, Elkhodary MM, Kamal AH. Deduction of the operable design space of RP-HPLC technique for the simultaneous estimation of metformin, pioglitazone, and glimepiride. Sci Rep 2023; 13:4334. [PMID: 36928591 PMCID: PMC10020468 DOI: 10.1038/s41598-023-30051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
A reversed-phase RP-HPLC method was developed for the simultaneous determination of metformin hydrochloride (MET), pioglitazone (PIO), and glimepiride (GLM) in their combined dosage forms and spiked human plasma. Quality risk management principles for determining the critical method parameters (CMPs) and fractional factorial design were made to screen CMPs and subsequently, the Box-Behnken design was employed. The analytical Quality by Design (AQbD) paradigm was used to establish the method operable design region (MODR) for the developed method depended on understanding the quality target product profile (QTPP), analytical target profile (ATP), and risk assessment for different factors that affect the method performance to develop an accurate, precise, cost-effective, and environmentally benign method. The separation was carried out using a mobile phase composed of methanol: 0.05 M potassium dihydrogen phosphate buffer pH 3.7 with 0.05% TEA (78:22, v/v). The flow rate was 1.2 mL/min. DAD detector was set at 227 nm. Linagliptin (LIN) was used as an internal standard. The proposed method was validated according to The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). The assay results obtained by using the developed method were statistically compared to those obtained by the reported HPLC method, and a satisfying agreement was observed.
Collapse
Affiliation(s)
- Aya A Marie
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Salim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34517, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud M Elkhodary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
- Faculty of Pharmacy, Medical Campus of Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
7
|
Ahmadi R, Azooz EA, Yamini Y, Ramezani AM. Liquid-liquid microextraction techniques based on in-situ formation/decomposition of deep eutectic solvents. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Hopkins TA, VandenElzen L, Nelson BP, Vaid V, Brickley J, Ariza P, Whitacre G, Patel I, Gooch O, Bechman M, Jordan C. Chiral Solvent Discovery: Exploring Chiral Eutectic Mixtures and Deep Eutectic Solvents. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Todd A. Hopkins
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Liam VandenElzen
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Brian P. Nelson
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Vishnu Vaid
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Jayme Brickley
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Paola Ariza
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Grace Whitacre
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Inaya Patel
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Olivia Gooch
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Mandy Bechman
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Charlotte Jordan
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| |
Collapse
|
10
|
Du M, Li T, Zhu W, Shi Y, Chen X, Wang C, Fan J. In-situ formation of hydrophobic deep eutectic solvent for the enrichment and quantitative determination of triclosan in personal care products and environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kiszkiel-Taudul I, Starczewska B, Jarosz M. Microextraction of ampicillin from bovine milk using ionic liquids and deep eutectic solvents prior to its chromatographic determination with ultraviolet and tandem mass spectrometry detection. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Andruch V, Varfalvyová A, Halko R, Jatkowska N, Płotka-Wasylka J. Application of deep eutectic solvents in bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Separation Method in Biological and Environmental Analysis. Molecules 2022; 27:molecules27092880. [PMID: 35566233 PMCID: PMC9104958 DOI: 10.3390/molecules27092880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Collapse
|
14
|
Application of deep eutectic solvents (DESs) as trace level drug extractants and drug solubility enhancers: State-of-the-art, prospects and challenges. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. SEPARATIONS 2022. [DOI: 10.3390/separations9010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, major attention has been focused on microextraction procedures that allow high recovery of target analytes, regardless of the complexity of the sample matrices. The most used techniques included liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME), dispersive liquid-liquid microextraction (DLLME), microextraction by packed sorbent (MEPS), and fabric-phase sorptive extraction (FPSE). These techniques manifest a rapid development of sample preparation techniques in different fields, such as biological, environmental, food sciences, natural products, forensic medicine, and toxicology. In the biological and forensic fields, where a wide variety of drugs with different chemical properties are analyzed, the sample preparation is required to make the sample suitable for the instrumental analysis, which often includes gas chromatography (GC) and liquid chromatography (LC) coupled with mass detectors or tandem mass detectors (MS/MS). In this review, we have focused our attention on the biological and forensic application of these innovative procedures, highlighting the major advantages and results that have been accomplished in laboratory and clinical practice.
Collapse
|
16
|
Muheem A, Jahangir MA, Baboota S, Ali J. Recent patents and a market overview on green or bio-based solvents for chromatographic analysis: a review. Pharm Pat Anal 2021; 10:227-235. [PMID: 34753297 DOI: 10.4155/ppa-2021-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Green solvents (GS) in chromatography originate from green chemistry. Therefore, using GSs in liquid chromatographic analysis to separate drugs and chemicals is an emerging approach to reduce hazardous chemicals in nature. The Orbit Intelligence database was used to conduct a strategic patent search for peer-reviewed patents on GSs as a mobile phase for chromatographic analysis. This article reported numerous approaches for encouraging GSs such as ethanol, butanol, esters, polyethylene glycol, supercritical fluids and nonionic surfactants to analyze drugs or compounds. The main aim of this article is to explore the patented GSs for chromatographic analysis and forecasting of the GSs that encourage industries to shift from hazardous to GSs.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammed Asadullah Jahangir
- Department of Pharmaceutics, Nibha Institute of Pharmaceutical Sciences, Rajgir, Nalanda-803116, Bihar, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|