1
|
Zhang C, Tang J, Huang Y, Fan R, Zhou L. Dispersive solid phase extraction based on cross-linked hydroxypropyl β-cyclodextrin polymers for simultaneous enantiomeric determination of three chiral triazole fungicides in water. Mikrochim Acta 2023; 191:18. [PMID: 38087124 DOI: 10.1007/s00604-023-06091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
An efficient method is presented for simultaneous enantioselective determination of three chiral triazole fungicides (namely paclobutrazol, hexaconazole, and diniconazole) in water samples by DSPE-HPLC-UV. The perfect chiral separation of the enantiomers was achieved on a Chiralpak IH column within 15 min. In order to adsorb and enrich the analytes from water matrices, a cross-linked hydroxypropyl β-cyclodextrin polymer was synthesized. The prepared material exhibited good adsorption capacity, which was assessed by adsorption kinetic and adsorption thermodynamic experiments. One-variable-at-a-time and the response surface methodology were used to optimize the extraction parameters. Under the optimum sample preparation conditions, good linearity (2.0 ~ 800 µg L-1, R2 ≥ 0.9978), detection limits (0.6 to 1.0 µg L-1), quantitation limits (2.0 to 3.2 µg L-1), recoveries (86.7 ~ 105.8%), and the relative standard deviation (intra-day RSD ≤ 3.7%, inter-day RSD ≤ 5.1%) were obtained, satisfying the requirements of pesticides residues determination. These results demonstrated that the proposed method was applicable for routine determination of chiral triazole fungicide residues in water samples.
Collapse
Affiliation(s)
- Chuhan Zhang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Jing Tang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yihe Huang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| |
Collapse
|
2
|
Park C, Zuo J, Gil MC, Löbenberg R, Lee BJ. Investigation of Cannabinoid Acid/Cyclodextrin Inclusion Complex for Improving Physicochemical and Biological Performance. Pharmaceutics 2023; 15:2533. [PMID: 38004513 PMCID: PMC10675134 DOI: 10.3390/pharmaceutics15112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the enhancement of cannabinoid acid solubility and stability through the formation of a cannabinoid acid/cyclodextrin (CD) inclusion complex. Two cannabinoid acids, tetrahydro-cannabinolic acid (THCA) and cannabidiolic acid (CBDA), were selected as a model drug along with five types of CD: α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD). Phase solubility studies were conducted using various types of CD to determine the complex stoichiometry. The preparation methods of the CD inclusion complex were optimized by adjusting the loading pH solution and the drying processes (spray-drying, freeze-drying, spray-freeze-drying). The drying process of the cannabinoid acid/M-β-CD inclusion complex was further optimized through the spray-freeze-drying method. These CD complexes were characterized using solubility determination, differential scanning calorimetry (DSC), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and 1H NMR spectroscopy. DSC, XRD, and FE-SEM studies confirmed the non-crystalline state of the cannabinoid acid/CD inclusion complex. The permeation of THCA or CBDA from the M-β-CD spray-freeze-dried inclusion complex was highly improved compared to those of cannabis ethanolic extracts under simulated physiological conditions. The stability of the cannabinoid acid/M-β-CD inclusion complex was maintained for 7 days in a simulated physiological condition. Furthermore, the minimum inhibitory concentration of cannabinoid acid/M-β-CD inclusion complex had superior anti-cancer activity in MCF-7 breast cancer cell lines compared to cannabinoid acid alone. The improved physicochemical and biological performances indicated that these CD inclusion complexes could provide a promising option for loading lipophilic cannabinoids in cannabis-derived drug products.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Myung-Chul Gil
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- PLUTO Inc., Seongnam 13453, Republic of Korea
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| |
Collapse
|
3
|
Martínez-Pérez-Cejuela H, Conejero M, Amorós P, El Haskouri J, Simó-Alfonso EF, Herrero-Martínez JM, Armenta S. Metal-organic frameworks as promising solid-phase sorbents for the isolation of third-generation synthetic cannabinoids in biological samples. Anal Chim Acta 2023; 1246:340887. [PMID: 36764780 DOI: 10.1016/j.aca.2023.340887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
In this work, metal-organic frameworks (MOFs) were used for the first time as solid-phase extraction (SPE) sorbents for the isolation of synthetic cannabinoids (SCs) from oral fluids and subsequently quantified by LC-fluorescence detection (FLD). In this context, different MOF families were synthesized and tested under SPE mode. UiO-66 was the family selected, being the amino functionalized (NH2-UiO-66) the best candidate in terms of extraction performance. After the method optimization, several analytical parameters of interest were obtained, reaching limits of detection (LODs) as low as 0.6-0.8 μg L-1 and precision values (expressed as RSD) lower than 10.6%. The developed method was successfully applied to the determination of 8 SCs in different oral fluids at three spiked levels with recoveries between 67 and 114%. This method claims to be a real alternative for screening purposes, being a cost-effective procedure due to the price of the sorbent (<0.5 €/cartridge) and its recyclability (up to 12 uses), among others good features.
Collapse
Affiliation(s)
| | - Mónica Conejero
- Department of Analytical Chemistry, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Material Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Jamal El Haskouri
- Institute of Material Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | | | | | - Sergio Armenta
- Department of Analytical Chemistry, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
4
|
García-Atienza P, Martínez-Pérez-Cejuela H, Simó-Alfonso E, Herrero-Martínez J, Armenta S. Determination of synthetic cannabinoids in oral fluids by liquid chromatography with fluorescence detection after solid-phase extraction. MethodsX 2023; 10:102173. [PMID: 37122371 PMCID: PMC10133741 DOI: 10.1016/j.mex.2023.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Synthetic cannabinoids are one of the most consumed new psychoactive substances, being absolutely necessary the development of analytical methodologies for the determination of these substances in biological fluids. In this study, a liquid chromatography with fluorescence detection (LC-FD) method has been developed for the analysis of 8 synthetic cannabinoids in oral fluids. The method has been validated in terms of linearity, precision and extraction recoveries, giving limits of detection as low as 0.7 µg L-1, and limits of quantification of 2.6 µg L-1. Different silica and polymeric commercial solid sorbents such as C18, Supel-Select HLB, EB2 ExtrabondⓇ and SampliQ-OPT were tested, concluding that Supel-Select HLB provided quantitative recoveries for the extraction of synthetic cannabinoids in oral fluids.•Analysis of synthetic cannabinoids in oral fluids.•Analytical procedure based on liquid chromatography with fluorescence detection.•Sample treatment based on solid phase extraction with HLB cartridges.
Collapse
|
5
|
Micellar Electrokinetic Chromatography Method for the Analysis of Synthetic and Phytocannabinoids. J Chromatogr A 2022; 1673:463080. [DOI: 10.1016/j.chroma.2022.463080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|